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Abstract

We introduce Mapping-friendly Sequence Reduction (MSR) sketches,
a sketching method for high-fidelity (HiFi) long reads, and Alice, an as-
sembler that operates directly on these sketches. MSR produces compact
representations that (i) are alignable sequences—two sequences align if
and only if their MSR sketches align—and (ii) are collision-resistant, so
distinct sequences yield distinct sketches with high probability, retain-
ing small differences between closely related strains. Alice reduces long
reads to short MSR sketches, uses a classic short-read assembly method
to assemble those sketches and decompresses the result to obtain the final
assembly. This strategy addresses the longstanding challenge of producing
a strain-resolved assembly for a low computational cost. On an Adineta
vaga genome, a mock gut community comprising five conspecific strains,
and two real metagenomes (human stool and soil), Alice is an order of
magnitude faster than state-of-the-art HiFi assemblers while delivering
assemblies of comparable quality and improving recovery of highly simi-
lar strains.

1 Introduction

With the rise of high-throughput sequencing, genomic experiments have been
producing vast amounts of data, far outpacing the growth of computing power
predicted by Moore’s law [12]. It is now common for a single experiment to
generate dozens or even hundreds of gigabases of data. In parallel, the length
and quality of the sequencing reads haveimproved immensely. PacBio HiFi
consensus reads are several thousands of basepairs long with an error rate lower
than 0.1%. Oxford Nanopore Technologies (ONT) reads have also become even
longer, albeit slightly less accurate.

Assembling metagenomic datasets, i.e. aligning and merging reads to obtain
consensus sequences representative of the metagenome, is a taxing computa-
tional task. It can easily require several weeks of CPU hours and hundreds of
gigabytes of RAM [13[18,[37]. As dataset become larger and cheaper to produce,
metagenome assembly can become a bottleneck in terms of cost, computation
time and quality.
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A general popular technique to diminish the size of the computations is to
sketch the input data, i.e. reduce it to a smaller representation on which com-
putations can still be made [28]. In the realm of genome assembly, sketching has
long been employed for all-versus-all read mapping as a first step of the Overlap-
Layout-Consensus assembly paradigm [19]. However, it has only recently been
effectively integrated into the faster De Bruijn Graph assemblers, specifically
for high-fidelity reads. Building on concepts from wtdbg2 [29], shasta [30], and
Peregrine [8], Ekim, Berger and Chikhi introduced a method that samples a
fraction 0 of the k’-mers in the reads, chains the resulting series of k k’-mers
into “k-mers of k’-mers” called k-min-mers, assemble those k-min-mers and
subsequently transforms the resulting chain back into a genome sequence [11].
This approach demonstrated remarkable efficiency in a proof-of-concept assem-
bler called mDBG [11], enabling human genome assemblies to be completed in
minutes on a personal computer. It was further developed as a metagenomic as-
sembler named metaMDBG [3]. However, these assemblers encounter significant
limitations that arise directly from the chosen sketching method.

Metagenomic samples as well as diploid (or polyploid) genome sequences
often contain strains that are genetically similar yet functionally distinct [34].
However, when (meta)mDBG sketches the reads as a chain of k-mers, differences
—such as single nucleotide polymorphisms (SNPs)—between highly similar se-
quences is often lost. As a result, both mDBG and metaMDBG struggle to
differentiate between highly similar haplotypes.

In this study, we present a novel assembler named Alice. Conceptually, Al-
ice shares similarities with metaMDBG, as it begins by sketching reads and
assembling the sketches before decompressing the obtained sequences to yield
the final assembly. However, Alice introduces a significant innovation through
a new sketching method called Mapping-friendly Sequence Reduction (MSR).
Originally proposed to improve read mapping quality [4], the potential of MSR
as a sketching technique had not been previously investigated. In our method-
ology, we employ a carefully parametrized MSR to sketch PacBio HiFi reads,
resulting in a computationally efficient assembler that maintains the ability to
reconstruct highly similar sequences. The name “Alice” is inspired by Lewis
Carroll’s Alice in Wonderland |5, where Alice uses a “drink-me potion” to pass
through a small door and a “eat-me” cake to return to her original size. In this
analogy, Alice represents the reads, the small door symbolizes the constraints
of hardware and software capacity, and the potion corresponds to the MSR
sketching technique. The assembly process is depicted in Figure

We evaluated Alice on three distinct PacBio HiFi metagenomic datasets—(i)
a mock community comprising five Escherichia coli strains, (ii) a human-gut
stool sample, and (iii) a soil sample. Compared with leading assemblers such as
metaMDBG [3], (meta)Flye [17,|18], and hifiasm(_meta) [6}13], Alice assembled
the data one order of magnitude faster and with lower memory consumption.
Moreover, Alice reliably discriminated closely related strains and produced the
most complete assemblies in several scenarios. We also examined the assembly of
a genomic dataset obtained from HiFi sequencing of the bdelloid rotifer Adineta
vaga, a rising model organism for which several genome assemblies of increasing
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Figure 1: Assembly process of Alice. Step 2 is a very classical assembly proce-
dure.
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accuracy have been published [14}|31], albeit none based on PacBio HiFi yet. On
this novel dataset, Alice generated an assembly comparable to those produced
by state-of-the-art assemblers such as LJA [1], Flye [17], and hifiasm [6], but
with RAM usage and run time both one order of magnitude lower than these
other tools.

2 Results

The fundamental difference between (meta)MDBG and Alice is their sketching
scheme. In the next two subsections, we introduce MSR sketches and their
interest.

2.1 Mapping-friendly Sequence Reductions (MSR)
sketches

Mapping-friendly Sequence Reductions are functions that transform a sequence
of characters into a new sequence |4]. A MSR is defined by an alphabet (in this
case, the DNA alphabet {4,C,G,T}), an order | and a transforming function
g that maps each sequence of length [, or [-mer, to either a character in the
alphabet or a special “empty” character e. To ensure a a sequence and its reverse
complement are reduced to reverse complement sequences (which is important
for genome assembly), an extra constraint is added to ¢g: ¢ must map reverse-
complement [-mers to reverse-complement bases.

MSRs work by taking an input sequence and breaking it down into successive
overlapping [-mers, which are sequentially passed through the function g to
produce a reduced sequence. If g returns a character, that character is added to
the reduced sequence. If g returns the empty character €, nothing is added to
the reduced sequence. The pseudocode for this process is provided in Algorithm
1.

Algorithm 1 Mapping-friendly Sequence Reductions
Function MSR(seq, I, g)

«w»”

new_seq =
for i =0 to len(seq) — 1+ 1 do
Imer = seq[i : i + ]
new_char = g(lmer)
if new_char # € then
new_seq = new_seq + char
end if
end for
return new-seq

By design, if the length [ is not too large, two highly similar sequences
will share many [-mers in the same order, resulting in highly similar reduced
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sequences. Consequently, the reduced versions of two sequences that align have
a high probability of aligning as well; we refer to this property of the reduction as
mapping-friendliness. Importantly for us, this mapping-friendly property could
also be defined as assembly-friendly: the assembly of reduced reads is equivalent
to the reduced assembly of the original reads (notwithstanding assembly errors).
Reduced reads can thus be used as sketches of their non-reduced counterparts
while being potentially much shorter.

2.2 The power of MSR sketches

While the k-min-mers used by metaMDBG tend produce identical sketches
for highly similar sequences, thereby collapsing single-nucleotide polymorphism
(SNP) differences between them, MSR sketches amplify the difference between
highly similar sequences, hence preserving SNPs and other small differences
between the haplotypes.

As an illustration, let us compare the behavior of MSR and mDBG’s k-
min-mers showcasing the same compression ratio. We define the compression
factor ¢ of a sketching method as the expected ratio of the number of bases in a
random sequence and the number of bases in its sketch. For MSR sketching, this
is equal to the inverse of the ratio of [-mers mapping to non-empty characters.
For mDBG, ¢ = 1/6k’.

Let us imagine two infinite sequences differing by a single substitution. For
the sake of simplicity, let us assume that no &’-mer or [-mer is repeated around
this SNP. Let ¢ be the compression factor. In metaMBDG, a k’-mer has a
probability § = 1/k’c of being sampled, and k' k’-mers overlap the SNP. The
probability that the sketches of the two sequences are different is thus

1 o
=0

In MSR sketching, two sketches are identical if the [ consecutive l-mers
around the SNP on each sequence output the same bases in the same order. The
function g employed to produce our MSR sketches is crafted to ensure that there
is virtually no correlation between input k-mers and their corresponding image
through g (the function is fully described in the Methods section). Therefore we
can compute the probability that the sketches of the two sequences are identical
by applying the law of total probability: the probability that the two sketches
are identical is the probability that the two sketches have the same number
of bases i (which is given by the square of the probability of choosing i items
among [, if each of them has a probability 1/c of being chosen; i.e., the square of
the binomial law) multiplied by the probability that two series of i DNA bases

1

are identical (which is ;7):

i=0
If we use Alice’s default compression factor of 20 and order I of 101, the
probability that the mDBG sketches of the two sequences are different is of less
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Figure 2: Wall-clock time on 8 threads and RAM usage of the assemblers on
the four assemblies assemblies. Scales are logarithmic

than 10%, whereas the probability that the MSR sketches of the two sequences
are different is higher than 99%.

2.3 Benchmarking setup

We conducted a benchmarking analysis of Alice, comparing its performance
against the three most commonly utilized HiFi metagenomic assemblers, namely
metaFlye , hifiasm_meta , and metaMDBG , and four genomic assem-
blers, namely hifiasm [6], Flye [17], LJA [1] and rust-mdbg [11]. Each assembler
was executed using their recommended settings. For Alice, we used the default
parameters of a compression factor of 20 and an order of 101, adding the op-
tion —single-genome for the assembly of Adineta vaga. A detailed discussion of
these parameter choices, along with tests of alternative settings, can be found
in section [£.4] of the methods.

To benchmark Alice, we first utilized the Zymobiomics Gut Microbiome
Standard, a commercially available mixture of 19 bacterial strains and two
yeast strains, specifically formulated to mimic the gut microbiome’s compo-
sition. PacBio HiFi sequencing data for this standard were accessible under
the accession number SRR13128013. The relative abundances of each organism
in the mixture, along with their genomic sequences, are known. Notably, this
dataset includes five closely similar strains of Fscherichia coli, which present
a challenge to assemble separately. Secondly, we assessed Alice on two true
metagenomic communities, a HiFi sequencing dataset derived from a human
stool sample and a HiFi sequencing dataset derived from a soil sample [3].
Both datasets had previously been employed by the authors of metaMDBG to
benchmark their own assembler [3]. Finally, as an exploratory endeavor, we also
assembled the animal Adineta vaga genome to see if Alice could be applied to
genomic assemblies.
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2.4 Order-of-magnitude speedup

Figure[2|presents the runtime and memory consumption of each assembler across
the four benchmark datasets. Alice consistently outperforms the competitors,
achieving dramatic reductions in both metrics.

On the human-stool and soil samples, Alice is at least an order of magni-
tude faster than metaMDBG, metaFlye and hifiasm_meta. For the Adineta vaga
dataset, Alice’s speedup reaches two orders of magnitude relative to all other as-
semblers (aside from rust-mdbg, whose assemblies are of markedly lower quality,
as discussed later).

The largest memory demand observed for Alice was <30 GB (soil assembly).
Although this exceeds metaMDBG’s footprint, it remains attainable even on a
laptop, and represents more than a tenfold reduction compared with metaFlye
and hifiasm_meta, which require several hundred gigabytes of RAM for the soil
and stool samples.

Beyond saving time, money, and hardware, the modest resource demands
of metaMDBG and Alice will enable much deeper sequencing of metagenomic
communities in the future. Historically, the main bottleneck for deep metage-
nomic studies has been obtaining high-quality, high-coverage data, but recent
advances now make it possible to generate HiFi datasets of hundreds of giga-
bases, for a rapidly decreasing price. This increased depth will allow us to detect
and characterize low-abundance species that were previously missed. In con-
trast, assemblers such as Flye and hifiasm_meta are already approaching their
practical limits in RAM consumption and runtime for these massive datasets.

2.5 Alice produces the most complete high-coverage
metagenomic assemblies

We employed metaQUAST [24] to evaluate the assemblies derived from the Zy-
moBIOMICS gut microbiome standard. Comprehensive metrics on complete-
ness, duplication ratios, and contiguity are reported in Supplementary Tables 1
and 2, with the full metaQUAST output provided in the supplementary data
set.

Our analysis focused particularly on the assemblers’ performance in sep-
arating the five closely related Escherichia coli strains. The assemblers dis-
played varied reconstruction capabilities: metaMDBG and metaFlye each recon-
structed only a single strain in its entirety, whereas the remaining four strains
were only partially recovered. A 27-mer—based assessment indicated that 20%
(metaMDBG) and 10% (metaFlye) of strain-specific E. coli 27-mers were absent
from the final assemblies. Conversely, both hifiasm_meta and Alice achieved
high completeness across all five strains, missing merely 4.5% and 3% of the
strain-specific 27-mers, respectively. Although hifiasm_meta produced longer
contigs and thus attained superior completeness according to the alignment-
based metaQUAST statistics relative to Alice, this came at the cost of an el-
evated duplication ratio. This suggests that hifiasm_meta has a propensity to
“invent” spurious strains—a phenomenon also observed for the other species of
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the sample.

Evaluating the assemblies of the human gut and soil metagenomes presented
more challenge because the exact composition of genomes in those samples was
unknown. To assess assembly completeness, we compared the 31-mer content of
each assembly with the 31-mers present in the HiFi reads, which were counted
using KMC [16]. We assumed that any 31-mer appearing more than five times
in the HiFi reads was unlikely to be a sequencing error. Accordingly, we plotted
the fraction of these high-confidence 31-mers recovered by each assembler as a
function of their abundance in the reads (Figure [3a] for the human stool sample
and Figure |3b| for the soil sample).

The results show that Alice yields the most complete assemblies at high cov-
erage, whereas metaMDBG performs best at low coverage. In the human gut
dataset, we were surprised to find that metaMDBG and hifiasm_meta missed
22% and 15% of the high-coverage (>20x) 31-mers, respectively. Inspection of
the Alice assemblies revealed that most of the 31-mers missed by metaMDBG
and hifiasm_meta reside in small bubbles or dead-ends. Indeed, these two assem-
blers are designed to aggressively discard such likely such short, likely artefactual
sequences in order to improve overall contiguity. The low-abundance 31-mers
missed by Alice were predominantly lost during the MSR compression step.

The contiguity metrics reported in Supplementary Tables 2 and 3 indicate
that Alice’s assemblies are generally less contiguous than those produced by the
other tools. For instance, on the stool samples Alice achieved an N50 of 61
kb, whereas metaFlye, hifiasm_meta, and metaMDBG reached N50 values of
122 kb, 143 kb, and 210 kb, respectively. A similar trend appears in the soil
assemblies, where Alice’s N50 was 6.5 kb compared with 29 kb, 41 kb, and 17 kb
for metaFlye, hifiasm_meta, and metaMDBG. This lower contiguity represents
an opportunity for further optimization of Alice, acknowledging that attaining
both high contiguity and high completeness remains a challenge.

2.6 Metagenomic binners are not adapted to uncollapsed
assemblies

After assembly, metagenomic contigs are typically grouped into Metagenome
Assembled Genomes (MAGs), and the quality of these MAGs is commonly used
to evaluate an assembler’s performance [3||13]. To assess Alice on this metric, we
binned the human-gut assemblies with the popular binning program SemiBin2
[26] and evaluated the resulting bins using CheckM [9]. Across all samples,
Alice’s assemblies yielded fewer high-quality MAGs (>90% completeness,<5%
contamination) than those produced by metaMDBG and hifiasm-meta.

A closer inspection of the FEscherichia coli strains in the ZymoBIOMICS
mock community clarified the source of this result. MetaQUAST analysis of
the assemblies (Supplementary Table 1) shows that Alice and hifiasm-meta each
recovered all five E.coli strains, whereas metaMDBG recovered only one strain in
its entirety. However, SemiBin2 generated no high-quality MAG from the Alice
assembly, one from the hifiasm-meta assembly, and two from the metaMDBG



+ Total number of 31-mers in each bin

metaMDBG Alice

0.6 0.6

hifiasm_meta

metaFlye

.
Total

0.61

0.62 0.64 0.66 0.68 069 071 0.72

" ' il
12 13 14 15

| "
10 1

|
19

! metaMDBG Alice

hifiasm_meta

metaFlye

Multiplicity of 31-mers in the sequencing dataset

(b)

16 17 18
Multiplicity of 31-mers in the sequencing dataset
(a)
¥
+
+ +
+
+
+
066 0.68 0.71 092 097
091 094
057 062 066 0.89 0094
0.55 0.62 092 096
] ' ]

9 10 11 12 13 14 15 19 >20

-10

0.8

0.6

0.4

Proportion of 31-mers present

0.2

0.0

-10

0.0

Proportion of 31-mers present

Figure 3: Analysis of the 31-mer abundances of the reads vs the assemblies in
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in bin B indicates that % of the 31-mers of multiplicity B in the reads are
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and red colors. However, as binners are typically heavily based on coverage, the
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from strain-specific contigs.

assembly, one of which was a chimeric bin comprising fragments from multiple
strains.

We hypothesize that the underlying issue is that SemiBin2 (and other bin-
ners) rely heavily on coverage profiles to assign contigs to bins. This strategy
works well for long, linear contigs but fails when the assembly graph remains
tangled. SemiBin2 struggles when contigs are short and some of them should
be assigned to several bins (see Fig. [d). We tried using metaCoAG [21] as an
alternative binning strategy to exploit more thoroughly the assembly graphs,
but a similar behavior was observed.

We have seen above that the the graph-simplification steps applied by
metaMDBG and hifiasm_meta can reduce assembly completeness to improve
contiguity. In the light of these results, these simplifications can be seen as
helping yield cleaner, more “binner-friendly” assemblies that translate into
higher-quality MAGs. In contrast, Alice is more conservative in its graph
simplifications to preserve the full genomic content of the sample. The trade-off
is that Alice’s richer, less-simplified assemblies will require the development of
new binning strategies to improve over the state of the art MAGs generation.

2.7 Alice can be used to assemble genomic data

To benchmark Alice on a single-genome dataset, we sequenced the non-model
diploid bdelloid rotifer Adineta vaga using PacBio HiFi chemistry to a depth
of 140x (the reads are publicly available via BioProject PRJNA1335825). The
principal challenge of this assembly is the organism’s relatively high heterozygos-
ity ( 1.7% [32]), whereas most assemblers are tuned for the far less heterozygous
human genome.

We assessed the quality of the A. vaga assemblies in two ways. First, we
ran a BUSCO evaluation [33] 22 against the metazoa_odb10 reference set.
This analysis showed no substantial differences in gene completeness between
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Figure 5: KAT plots of the Adineta vaga assemblies against the HiFi sequencing
reads. The 31-mer spectra show two peaks, one corresponding to homozygous
31-mer (seen twice in the genome and on overage 280 times in the reads), and
the other corresponding to heterozygous 31-mers (seen once in the genome and
on average 140 times in the reads). Additionally, the peak of 31-mer with a
abundance near 0 in the reads correspond to sequencing errors. The colors
represent the abundance of the 31-mers in the assemblies.

the assemblers. Second, we performed a spectral analysis of 31-mer frequencies
using KAT ; the results are displayed in Figure [5| The assembly statistics
are summarized in Table [II

Our results indicate that Alice produced a genome assembly comparable
in quality to the outputs of current state-of-the-art tools such as Flye, LJA,
and hifiasm, while requiring substantially less computational effort. Compared
with rust-mdbg, Alice achieved similar resource usage but delivered a markedly
better assembly. Spectral analysis revealed that even with a high 140x HiFi cov-
erage, rust-mdbg lost a large fraction of 31-mers in its final contigs. Moreover,
rust-mdbg, hifiasm, and LJA exhibited pronounced sequence over-duplication,
whereas both Alice and Flye generated a high-fidelity assembly with only a mod-
est amount of collapsed homozygous regions creating bubble structures in the
assembly graphs. Among the tested assemblers, Flye attained the highest con-
tiguity, giving it a slight edge over Alice, but for a much higher computational
cost.

Alice  Flye hifiasm LJA rust-mdbg
31-mer completeness (%)  99.91 99.93 99.97 99.91 95.02

BUSCO completeness (%) 79.0  79.1 79.9 79.0 78.3
N50 (Mb) 1.37  9.35 11.01 0.08 0.05
N90 (Mb) 0.20 0.89 0.05 0.03 0.01
Number of contigs 1436 165 1429 4810 11703
CPU time (h) 14 253 465 62 0.4
Peak RAM (GB) 4.8 55 27 2 6.5

Table 1: Comparison of assembly statistics of Adineta vaga across different
tools. 31-mer completeness was computed using KAT. BUSCO completeness
was computed against the metazoa_odb10 database.

11
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3 Discussion

In this study, we present a novel approach for assembling highly precise reads
through the introduction of Mapping-friendly Sequence Reductions (MSR)
sketches. This method is implemented in a assembler named Alice, which we
evaluated on various datasets, including a diploid Adineta vaga genome, a
challenging mock community comprising five conspecific strains of Escherichia
coli, a human stool sample and a soil sample. Alice operated an order of
magnitude faster than competing assemblers while maintaining a low memory
usage. Moreover, it provided the most complete assemblies for high-coverage,
strain-rich datasets.

Despite its advantages, Alice exhibits two significant limitations compared to
some of its competitors. First, Alice employs conservative graph simplification
strategies to preserve nodes potentially associated with strain variation, which
consequently results in reduced contiguity relative to alternative assemblers and
poorer downstream binning. This limitation is inherent to Alice’s core assembly
engine rather than the MSR sketching technique itself, therefore the assembly
engine could be updated. Second, the current implementation struggles in the
assembly of low-abundance strains

A promising but vast avenue for enhancing the assembler involves modify-
ing the MSR function, which we designed to be pseudo-random. For instance,
we could introduce guarantees based e.g. on syncmers [10] to ensure that at
least one base is produced for all windows of length w. Another potential im-
provement could involve exploiting base qualities to estimate and improve the
quality of the reduced sequences. The authors of [4] demonstrated that alter-
ing the function can significantly enhance results when aligning reads reduced
with an MSR of order 2, indicating that the choice of the MSR function has a
substantial impact on downstream applications. We hypothesize that a care-
fully selected MSR function could also enable Alice to effectively handle reads
with higher error rates, although the challenge lies in the vast number of MSR
functions available for exploration.

While this study concentrates on using MSR sketching for metagenome as-
sembly, the technique has far-reaching potential beyond that scope. Because
assembled genomes typically exhibit very low error rates, MSR sketches could
be employed for tasks such as indexing or aligning assemblies—e.g., construct-
ing pangenome graphs. Additional promising applications include SNP calling
and read alignment, where the efficiency and accuracy of MSR sketching could
provide substantial benefits.

4 Methods

4.1 Reducing input reads

All reads are initially reduced using a Mapping-friendly Sequence Reduction
(MSR) provided by Alice. The MSR allows the user to select the order I (default
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value of 101) and the compression factor ¢ (default value of 20). The l-mers of
the reads are processed through a function g. This function takes an [-mer as
input and outputs either a single base, which is appended to the growing reduced
read, or an “empty” base €, which is not appended to the growing reduced read.

The function g of the MSR is designed as follows. The [-mer is converted into
its canonical form, which is either the original [-mer or its reverse complement
if the reverse complement is lexicographically smaller. ¢ then applies to the
canonical [-mer a pseudo-random hash function yielding a hash between 0 and
1 [15]. It distinguishes five cases:

e if the hash is smaller than 1/2c and the original l-mer is canonical, an A
is outputted

e if the hash is smaller than 1/2¢ and the original I-mer is not canonical, a
T is outputted

e if the hash is between 1/2c and 1/c and the original I-mer is canonical, a
C' is outputted

e if the hash is between 1/2¢ and 1/c and the original [-mer is not canonical,
a G is outputted

e if the hash is between 1/c and 1, € is outputted

This MSR is combined with a classic homopolymer compression process that
occurs before all the reads are sketched, at the very beginning of the process,
to reduce the error rate of the reads.

4.2 Assembling reduced reads

Many existing short-read and long-read assemblers were tested to assemble re-
duced reads, but they did not yield very convincing results, especially to sepa-
rate haplotypes. We believe this is due to reduced reads having slightly different
properties compared to regular sequencing reads of equivalent length. For ex-
ample, errors tend to cluster when ¢ -1 >> 1. Most assemblers did not manage
to assemble at all the reduced reads.

To address this issue, we developed a simple custom assembler that consists
of three steps.

1. Generate an unitig graph with a k-mer length of 31, discarding all k-mers
seen only once. This is done with BCALM2 [7] (Figure [Th)

2. Simplify the graph by removing tips and bubbles composed of k-mers seen
fewer than five times, a classic procedure in assemblers, as used for example
in [11} 20, [2] (Figure[ip). If several low-coverages bubbles are situated at a
distance less than 10 - k, they are deleted only when —single-genome mode
is activated, as they could represent a rare haplotype.
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3. The final step is to untangle the graph to improve contiguity and dupli-
cates unitigs that are present multiple times in the genome, following the
procedure of Unicycler [36]. More precisely, all reads are first aligned on
the graph (Figure [1| 2¢). Contigs for which all reads align consensually
forming a single path on both sides of the contigs are considered single-
copy contigs. When two single-copy contigs are linked by a set of reads,
the contigs on the path between the two single-copy contigs are duplicated
to form a single, long, single-copy contig (Figure (1} 2d).

4.3 Recovering the uncompressed assembly

The compressed assembly represents the reduced version of the final assembly.
Inflating this reduced version back to the full assembly is not straightforward,
as the MSR reduction function is not invertible.

Our method involves three steps:

e creating an inventory of k-mers that tile the compressed assembly, using a
k-mer size of 31 by default. For example, two 3-mers that tile the sequence
“ACCGTT” are “ACC” and “GTT”;

e re-running the MSR on all original reads, and each time a tiling k-mer is
produced, record the corresponding uncompressed sequence. For example,
we can record that “ACC” corresponds to “GTCGCATGACTGAT” and
“GTT” to “TCCGACTCATCAGA”; and finally

e reconstructing the full assembly by concatenating the uncompressed se-
quences of the tiling k-mers, which would yield in our example “GTCG-
CATGACTGATCCGACTCATCAGA”.

4.4 Choice of parameters

We experimented with different parameter choices for the compression factor
and the order of reduction on the Zymobiomics Gut Microbiome Standard
dataset to understand how these parameters influence the final assembly.

We conducted two experiments: one to assess the effects of the order and
another to assess the effect of the compression factor. First, we tested compres-
sion factors of 100, 50, 20, 10, and 5 with an order of 101. Second, we tested
orders of 11, 21, 51, 101, and 201 with a compression factor of 10.

The variation of these parameters primarily impacted the completeness of
the resulting assemblies and the run-times of the pipelines, while their accuracy,
duplication ratio, and contiguity remained equivalent.

As expected, the run-time increased with the compression factor, as there
was more data to assemble. This is illustrated in Figure [0}

Compressing more the data also had a positive impact on the completeness
and contiguity of the five highly similar E. coli strains (Figure @ When in-
vestigating the 27-mer completeness (not shown), all assemblies had a similar
amount of missing 27-mers. Hence, the main difference explaining the difference
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Figure 6: Variation of resource usage and metaQUAST completeness of the
Zymobiomics gut microbiome standard assemblies with different compression
factor and orders. “Rare strains” refer to C. albicans, S. cerevisiae, and S.
enterica. The completeness displayed are arithmetic means of the completeness
of the different genomes of the categories.

in completeness was that repeated regions were more shrunk when the data were
more compressed, which helped to assemble repeated regions closer to their true
multiplicity and thereby improved contiguity.

However, the results represented in Figure [6] show that compression nega-
tively impacted the completeness of the C. albicans, S. cerevisiae, and S. en-
terica genomes, which had relatively low coverage (see Supplementary Table 1
for the coverages). This is because the assembly algorithm requires a sufficient
number of error-free 31-mers in the compressed reads to produce a complete
assembly. An error-free compressed 31-mer corresponds to an error-free uncom-
pressed sequence of average length 31 x ¢ + [ without errors. Therefore, as the
compression factor ¢ increases, the number of correct 31-mers in the reads de-
creases. For genomes with low coverage, high compression can result in the loss
of precious 31-mers, leading to insufficient coverage of some regions, hindering
their assembly.

The order was found to have relatively little impact on the resulting assem-
blies. The only significant effect observed was when the order decreased to 11
and 5, where [/c approached or fell below 1. In these cases, the assembler began
collapsing highly similar sequences, leading to a decrease in the completeness of
the five E. coli strains. Despite the fact that the error rate scales approximately
linearly with [, increasing [ did not have a significant negative impact on the
completeness of the assemblies. This is because the errors in the compressed
reads cluster in increasingly large clusters, but the error-free regions between
these clusters diminish in size only slowly with [.

4.5 Data access & reproducibility

Alice is freely available on github at github.com/RolandFaure/alice-asm.
All the datasets used for benchmarking Alice are available publicly, under
accession numbers SRR13128013 for the Zymobiomics Gut Microbiome Stan-
dard, SRR28996637 for the human gut microbiome dataset, ERR15289804
for the soil and BioProject PRJNA1335825 for Adineta vaga. Zymo-HiFi
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mock reference genomes are available at https://s3.amazonaws.com/zymo-
files/BioPool /D6331.refseq.zip

Assemblies were run with Alice-asm version 0.6.41, hifiasm 0.24.0-r702, Flye

2.9.5-b1801, metaMDBG 1.0, LJA commit 99f93262¢c. All assemblies and com-
mand lines used are available in Zenodo, DOI 10.5281 /zenodo.17179435.
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