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Abstract5

We introduce Mapping-friendly Sequence Reduction (MSR) sketches,6

a sketching method for high-fidelity (HiFi) long reads, and Alice, an as-7

sembler that operates directly on these sketches. MSR produces compact8

representations that (i) are alignable sequences—two sequences align if9

and only if their MSR sketches align—and (ii) are collision-resistant, so10

distinct sequences yield distinct sketches with high probability, retain-11

ing small differences between closely related strains. Alice reduces long12

reads to short MSR sketches, uses a classic short-read assembly method13

to assemble those sketches and decompresses the result to obtain the final14

assembly. This strategy addresses the longstanding challenge of producing15

a strain-resolved assembly for a low computational cost. On an Adineta16

vaga genome, a mock gut community comprising five conspecific strains,17

and two real metagenomes (human stool and soil), Alice is an order of18

magnitude faster than state-of-the-art HiFi assemblers while delivering19

assemblies of comparable quality and improving recovery of highly simi-20

lar strains.21

1 Introduction22

With the rise of high-throughput sequencing, genomic experiments have been23

producing vast amounts of data, far outpacing the growth of computing power24

predicted by Moore’s law [12]. It is now common for a single experiment to25

generate dozens or even hundreds of gigabases of data. In parallel, the length26

and quality of the sequencing reads haveimproved immensely. PacBio HiFi27

consensus reads are several thousands of basepairs long with an error rate lower28

than 0.1%. Oxford Nanopore Technologies (ONT) reads have also become even29

longer, albeit slightly less accurate.30

Assembling metagenomic datasets, i.e. aligning and merging reads to obtain31

consensus sequences representative of the metagenome, is a taxing computa-32

tional task. It can easily require several weeks of CPU hours and hundreds of33

gigabytes of RAM [13, 18, 37]. As dataset become larger and cheaper to produce,34

metagenome assembly can become a bottleneck in terms of cost, computation35

time and quality.36
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A general popular technique to diminish the size of the computations is to37

sketch the input data, i.e. reduce it to a smaller representation on which com-38

putations can still be made [28]. In the realm of genome assembly, sketching has39

long been employed for all-versus-all read mapping as a first step of the Overlap-40

Layout-Consensus assembly paradigm [19]. However, it has only recently been41

effectively integrated into the faster De Bruijn Graph assemblers, specifically42

for high-fidelity reads. Building on concepts from wtdbg2 [29], shasta [30], and43

Peregrine [8], Ekim, Berger and Chikhi introduced a method that samples a44

fraction δ of the k′-mers in the reads, chains the resulting series of k k′-mers45

into “k-mers of k′-mers” called k-min-mers, assemble those k-min-mers and46

subsequently transforms the resulting chain back into a genome sequence [11].47

This approach demonstrated remarkable efficiency in a proof-of-concept assem-48

bler called mDBG [11], enabling human genome assemblies to be completed in49

minutes on a personal computer. It was further developed as a metagenomic as-50

sembler named metaMDBG [3]. However, these assemblers encounter significant51

limitations that arise directly from the chosen sketching method.52

Metagenomic samples as well as diploid (or polyploid) genome sequences53

often contain strains that are genetically similar yet functionally distinct [34].54

However, when (meta)mDBG sketches the reads as a chain of k-mers, differences55

—such as single nucleotide polymorphisms (SNPs)—between highly similar se-56

quences is often lost. As a result, both mDBG and metaMDBG struggle to57

differentiate between highly similar haplotypes.58

In this study, we present a novel assembler named Alice. Conceptually, Al-59

ice shares similarities with metaMDBG, as it begins by sketching reads and60

assembling the sketches before decompressing the obtained sequences to yield61

the final assembly. However, Alice introduces a significant innovation through62

a new sketching method called Mapping-friendly Sequence Reduction (MSR).63

Originally proposed to improve read mapping quality [4], the potential of MSR64

as a sketching technique had not been previously investigated. In our method-65

ology, we employ a carefully parametrized MSR to sketch PacBio HiFi reads,66

resulting in a computationally efficient assembler that maintains the ability to67

reconstruct highly similar sequences. The name “Alice” is inspired by Lewis68

Carroll’s Alice in Wonderland [5], where Alice uses a “drink-me potion” to pass69

through a small door and a “eat-me” cake to return to her original size. In this70

analogy, Alice represents the reads, the small door symbolizes the constraints71

of hardware and software capacity, and the potion corresponds to the MSR72

sketching technique. The assembly process is depicted in Figure 1.73

We evaluated Alice on three distinct PacBio HiFi metagenomic datasets—(i)74

a mock community comprising five Escherichia coli strains, (ii) a human-gut75

stool sample, and (iii) a soil sample. Compared with leading assemblers such as76

metaMDBG [3], (meta)Flye [17, 18], and hifiasm( meta) [6, 13], Alice assembled77

the data one order of magnitude faster and with lower memory consumption.78

Moreover, Alice reliably discriminated closely related strains and produced the79

most complete assemblies in several scenarios. We also examined the assembly of80

a genomic dataset obtained from HiFi sequencing of the bdelloid rotifer Adineta81

vaga, a rising model organism for which several genome assemblies of increasing82
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Figure 1: Assembly process of Alice. Step 2 is a very classical assembly proce-
dure.
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accuracy have been published [14, 31], albeit none based on PacBio HiFi yet. On83

this novel dataset, Alice generated an assembly comparable to those produced84

by state-of-the-art assemblers such as LJA [1], Flye [17], and hifiasm [6], but85

with RAM usage and run time both one order of magnitude lower than these86

other tools.87

2 Results88

The fundamental difference between (meta)MDBG and Alice is their sketching89

scheme. In the next two subsections, we introduce MSR sketches and their90

interest.91

2.1 Mapping-friendly Sequence Reductions (MSR)92

sketches93

Mapping-friendly Sequence Reductions are functions that transform a sequence94

of characters into a new sequence [4]. A MSR is defined by an alphabet (in this95

case, the DNA alphabet {A,C,G, T}), an order l and a transforming function96

g that maps each sequence of length l, or l-mer, to either a character in the97

alphabet or a special “empty” character ϵ. To ensure a a sequence and its reverse98

complement are reduced to reverse complement sequences (which is important99

for genome assembly), an extra constraint is added to g: g must map reverse-100

complement l-mers to reverse-complement bases.101

MSRs work by taking an input sequence and breaking it down into successive102

overlapping l-mers, which are sequentially passed through the function g to103

produce a reduced sequence. If g returns a character, that character is added to104

the reduced sequence. If g returns the empty character ϵ, nothing is added to105

the reduced sequence. The pseudocode for this process is provided in Algorithm106

1.

Algorithm 1 Mapping-friendly Sequence Reductions

Function MSR(seq, l, g)
new seq =“”
for i = 0 to len(seq) − l + 1 do
lmer = seq[i : i + l]
new char = g(lmer)
if new char ̸= ϵ then
new seq = new seq + char

end if
end for
return new seq

107

By design, if the length l is not too large, two highly similar sequences108

will share many l-mers in the same order, resulting in highly similar reduced109
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sequences. Consequently, the reduced versions of two sequences that align have110

a high probability of aligning as well; we refer to this property of the reduction as111

mapping-friendliness. Importantly for us, this mapping-friendly property could112

also be defined as assembly-friendly: the assembly of reduced reads is equivalent113

to the reduced assembly of the original reads (notwithstanding assembly errors).114

Reduced reads can thus be used as sketches of their non-reduced counterparts115

while being potentially much shorter.116

2.2 The power of MSR sketches117

While the k-min-mers used by metaMDBG tend produce identical sketches118

for highly similar sequences, thereby collapsing single-nucleotide polymorphism119

(SNP) differences between them, MSR sketches amplify the difference between120

highly similar sequences, hence preserving SNPs and other small differences121

between the haplotypes.122

As an illustration, let us compare the behavior of MSR and mDBG’s k-123

min-mers showcasing the same compression ratio. We define the compression124

factor c of a sketching method as the expected ratio of the number of bases in a125

random sequence and the number of bases in its sketch. For MSR sketching, this126

is equal to the inverse of the ratio of l-mers mapping to non-empty characters.127

For mDBG, c = 1/δk′.128

Let us imagine two infinite sequences differing by a single substitution. For
the sake of simplicity, let us assume that no k′-mer or l-mer is repeated around
this SNP. Let c be the compression factor. In metaMBDG, a k′-mer has a
probability δ = 1/k′c of being sampled, and k′ k′-mers overlap the SNP. The
probability that the sketches of the two sequences are different is thus

(1 − 1

k′c
)2k

′

In MSR sketching, two sketches are identical if the l consecutive l-mers
around the SNP on each sequence output the same bases in the same order. The
function g employed to produce our MSR sketches is crafted to ensure that there
is virtually no correlation between input k-mers and their corresponding image
through g (the function is fully described in the Methods section). Therefore we
can compute the probability that the sketches of the two sequences are identical
by applying the law of total probability: the probability that the two sketches
are identical is the probability that the two sketches have the same number
of bases i (which is given by the square of the probability of choosing i items
among l, if each of them has a probability 1/c of being chosen; i.e., the square of
the binomial law) multiplied by the probability that two series of i DNA bases
are identical (which is 1

4i ):

l∑
i=0

(

(
l

i

)
(
1

c
)i(1 − 1

c
)l−i)2 · 1

4i
≈ (1 − 1

c
)2l

If we use Alice’s default compression factor of 20 and order l of 101, the129

probability that the mDBG sketches of the two sequences are different is of less130
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Figure 2: Wall-clock time on 8 threads and RAM usage of the assemblers on
the four assemblies assemblies. Scales are logarithmic

than 10%, whereas the probability that the MSR sketches of the two sequences131

are different is higher than 99%.132

2.3 Benchmarking setup133

We conducted a benchmarking analysis of Alice, comparing its performance134

against the three most commonly utilized HiFi metagenomic assemblers, namely135

metaFlye [18], hifiasm meta [13], and metaMDBG [3], and four genomic assem-136

blers, namely hifiasm [6], Flye [17], LJA [1] and rust-mdbg [11]. Each assembler137

was executed using their recommended settings. For Alice, we used the default138

parameters of a compression factor of 20 and an order of 101, adding the op-139

tion –single-genome for the assembly of Adineta vaga. A detailed discussion of140

these parameter choices, along with tests of alternative settings, can be found141

in section 4.4 of the methods.142

To benchmark Alice, we first utilized the Zymobiomics Gut Microbiome143

Standard, a commercially available mixture of 19 bacterial strains and two144

yeast strains, specifically formulated to mimic the gut microbiome’s compo-145

sition. PacBio HiFi sequencing data for this standard were accessible under146

the accession number SRR13128013. The relative abundances of each organism147

in the mixture, along with their genomic sequences, are known. Notably, this148

dataset includes five closely similar strains of Escherichia coli, which present149

a challenge to assemble separately. Secondly, we assessed Alice on two true150

metagenomic communities, a HiFi sequencing dataset derived from a human151

stool sample [27] and a HiFi sequencing dataset derived from a soil sample [3].152

Both datasets had previously been employed by the authors of metaMDBG to153

benchmark their own assembler [3]. Finally, as an exploratory endeavor, we also154

assembled the animal Adineta vaga genome to see if Alice could be applied to155

genomic assemblies.156
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2.4 Order-of-magnitude speedup157

Figure 2 presents the runtime and memory consumption of each assembler across158

the four benchmark datasets. Alice consistently outperforms the competitors,159

achieving dramatic reductions in both metrics.160

On the human-stool and soil samples, Alice is at least an order of magni-161

tude faster than metaMDBG, metaFlye and hifiasm meta. For the Adineta vaga162

dataset, Alice’s speedup reaches two orders of magnitude relative to all other as-163

semblers (aside from rust-mdbg, whose assemblies are of markedly lower quality,164

as discussed later).165

The largest memory demand observed for Alice was ≤30 GB (soil assembly).166

Although this exceeds metaMDBG’s footprint, it remains attainable even on a167

laptop, and represents more than a tenfold reduction compared with metaFlye168

and hifiasm meta, which require several hundred gigabytes of RAM for the soil169

and stool samples.170

Beyond saving time, money, and hardware, the modest resource demands171

of metaMDBG and Alice will enable much deeper sequencing of metagenomic172

communities in the future. Historically, the main bottleneck for deep metage-173

nomic studies has been obtaining high-quality, high-coverage data, but recent174

advances now make it possible to generate HiFi datasets of hundreds of giga-175

bases, for a rapidly decreasing price. This increased depth will allow us to detect176

and characterize low-abundance species that were previously missed. In con-177

trast, assemblers such as Flye and hifiasm meta are already approaching their178

practical limits in RAM consumption and runtime for these massive datasets.179

2.5 Alice produces the most complete high-coverage180

metagenomic assemblies181

We employed metaQUAST [24] to evaluate the assemblies derived from the Zy-182

moBIOMICS gut microbiome standard. Comprehensive metrics on complete-183

ness, duplication ratios, and contiguity are reported in Supplementary Tables 1184

and 2, with the full metaQUAST output provided in the supplementary data185

set.186

Our analysis focused particularly on the assemblers’ performance in sep-187

arating the five closely related Escherichia coli strains. The assemblers dis-188

played varied reconstruction capabilities: metaMDBG and metaFlye each recon-189

structed only a single strain in its entirety, whereas the remaining four strains190

were only partially recovered. A 27-mer–based assessment indicated that 20%191

(metaMDBG) and 10% (metaFlye) of strain-specific E. coli 27-mers were absent192

from the final assemblies. Conversely, both hifiasm meta and Alice achieved193

high completeness across all five strains, missing merely 4.5% and 3% of the194

strain-specific 27-mers, respectively. Although hifiasm meta produced longer195

contigs and thus attained superior completeness according to the alignment-196

based metaQUAST statistics relative to Alice, this came at the cost of an el-197

evated duplication ratio. This suggests that hifiasm meta has a propensity to198

“invent” spurious strains—a phenomenon also observed for the other species of199
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the sample.200

Evaluating the assemblies of the human gut and soil metagenomes presented201

more challenge because the exact composition of genomes in those samples was202

unknown. To assess assembly completeness, we compared the 31-mer content of203

each assembly with the 31-mers present in the HiFi reads, which were counted204

using KMC [16]. We assumed that any 31-mer appearing more than five times205

in the HiFi reads was unlikely to be a sequencing error. Accordingly, we plotted206

the fraction of these high-confidence 31-mers recovered by each assembler as a207

function of their abundance in the reads (Figure 3a for the human stool sample208

and Figure 3b for the soil sample).209

The results show that Alice yields the most complete assemblies at high cov-210

erage, whereas metaMDBG performs best at low coverage. In the human gut211

dataset, we were surprised to find that metaMDBG and hifiasm meta missed212

22% and 15% of the high-coverage (≥20×) 31-mers, respectively. Inspection of213

the Alice assemblies revealed that most of the 31-mers missed by metaMDBG214

and hifiasm meta reside in small bubbles or dead-ends. Indeed, these two assem-215

blers are designed to aggressively discard such likely such short, likely artefactual216

sequences in order to improve overall contiguity. The low-abundance 31-mers217

missed by Alice were predominantly lost during the MSR compression step.218

The contiguity metrics reported in Supplementary Tables 2 and 3 indicate219

that Alice’s assemblies are generally less contiguous than those produced by the220

other tools. For instance, on the stool samples Alice achieved an N50 of 61221

kb, whereas metaFlye, hifiasm meta, and metaMDBG reached N50 values of222

122 kb, 143 kb, and 210 kb, respectively. A similar trend appears in the soil223

assemblies, where Alice’s N50 was 6.5 kb compared with 29 kb, 41 kb, and 17 kb224

for metaFlye, hifiasm meta, and metaMDBG. This lower contiguity represents225

an opportunity for further optimization of Alice, acknowledging that attaining226

both high contiguity and high completeness remains a challenge.227

2.6 Metagenomic binners are not adapted to uncollapsed228

assemblies229

After assembly, metagenomic contigs are typically grouped into Metagenome230

Assembled Genomes (MAGs), and the quality of these MAGs is commonly used231

to evaluate an assembler’s performance [3, 13]. To assess Alice on this metric, we232

binned the human-gut assemblies with the popular binning program SemiBin2233

[26] and evaluated the resulting bins using CheckM [9]. Across all samples,234

Alice’s assemblies yielded fewer high-quality MAGs (>90% completeness,<5%235

contamination) than those produced by metaMDBG and hifiasm-meta.236

A closer inspection of the Escherichia coli strains in the ZymoBIOMICS237

mock community clarified the source of this result. MetaQUAST analysis of238

the assemblies (Supplementary Table 1) shows that Alice and hifiasm-meta each239

recovered all five E.coli strains, whereas metaMDBG recovered only one strain in240

its entirety. However, SemiBin2 generated no high-quality MAG from the Alice241

assembly, one from the hifiasm-meta assembly, and two from the metaMDBG242
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(a)

(b)

Figure 3: Analysis of the 31-mer abundances of the reads vs the assemblies in
(a) in the human stool sample and (b) the soil sample. The top panel displays
the number of 31-mers in the reads as a function of their multiplicity in the
read dataset. The bottom panel presents a heatmap in which a number of x%
in bin B indicates that x% of the 31-mers of multiplicity B in the reads are
present in the corresponding assembly. For example, for the stool sample, 76%
of the 31-mers seen 7 times in the reads are found in the metaMDBG assembly.

9



bin 1 bin 2 bin 3

Figure 4: Typical binning problem when dealing with uncollapsed assembly.
Two similar strains are assembled in an assembly graph, represented by green
and red colors. However, as binners are typically heavily based on coverage, the
contigs shared between the strains are not duplicated and are binned separately
from strain-specific contigs.

assembly, one of which was a chimeric bin comprising fragments from multiple243

strains.244

We hypothesize that the underlying issue is that SemiBin2 (and other bin-245

ners) rely heavily on coverage profiles to assign contigs to bins. This strategy246

works well for long, linear contigs but fails when the assembly graph remains247

tangled. SemiBin2 struggles when contigs are short and some of them should248

be assigned to several bins (see Fig. 4). We tried using metaCoAG [21] as an249

alternative binning strategy to exploit more thoroughly the assembly graphs,250

but a similar behavior was observed.251

We have seen above that the the graph-simplification steps applied by252

metaMDBG and hifiasm meta can reduce assembly completeness to improve253

contiguity. In the light of these results, these simplifications can be seen as254

helping yield cleaner, more “binner-friendly” assemblies that translate into255

higher-quality MAGs. In contrast, Alice is more conservative in its graph256

simplifications to preserve the full genomic content of the sample. The trade-off257

is that Alice’s richer, less-simplified assemblies will require the development of258

new binning strategies to improve over the state of the art MAGs generation.259

2.7 Alice can be used to assemble genomic data260

To benchmark Alice on a single-genome dataset, we sequenced the non-model261

diploid bdelloid rotifer Adineta vaga using PacBio HiFi chemistry to a depth262

of 140× (the reads are publicly available via BioProject PRJNA1335825). The263

principal challenge of this assembly is the organism’s relatively high heterozygos-264

ity ( 1.7% [32]), whereas most assemblers are tuned for the far less heterozygous265

human genome.266

We assessed the quality of the A. vaga assemblies in two ways. First, we267

ran a BUSCO evaluation [33, 22] against the metazoa odb10 reference set.268

This analysis showed no substantial differences in gene completeness between269
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a) Alice e) rust-mdbgd) LJAc) hifiasmb) Flye

Figure 5: KAT plots of the Adineta vaga assemblies against the HiFi sequencing
reads. The 31-mer spectra show two peaks, one corresponding to homozygous
31-mer (seen twice in the genome and on overage 280 times in the reads), and
the other corresponding to heterozygous 31-mers (seen once in the genome and
on average 140 times in the reads). Additionally, the peak of 31-mer with a
abundance near 0 in the reads correspond to sequencing errors. The colors
represent the abundance of the 31-mers in the assemblies.

the assemblers. Second, we performed a spectral analysis of 31-mer frequencies270

using KAT [23]; the results are displayed in Figure 5. The assembly statistics271

are summarized in Table 1.272

Our results indicate that Alice produced a genome assembly comparable273

in quality to the outputs of current state-of-the-art tools such as Flye, LJA,274

and hifiasm, while requiring substantially less computational effort. Compared275

with rust-mdbg, Alice achieved similar resource usage but delivered a markedly276

better assembly. Spectral analysis revealed that even with a high 140× HiFi cov-277

erage, rust-mdbg lost a large fraction of 31-mers in its final contigs. Moreover,278

rust-mdbg, hifiasm, and LJA exhibited pronounced sequence over-duplication,279

whereas both Alice and Flye generated a high-fidelity assembly with only a mod-280

est amount of collapsed homozygous regions creating bubble structures in the281

assembly graphs. Among the tested assemblers, Flye attained the highest con-282

tiguity, giving it a slight edge over Alice, but for a much higher computational283

cost.284

Alice Flye hifiasm LJA rust-mdbg

31-mer completeness (%) 99.91 99.93 99.97 99.91 95.02
BUSCO completeness (%) 79.0 79.1 79.9 79.0 78.3
N50 (Mb) 1.37 9.35 11.01 0.08 0.05
N90 (Mb) 0.20 0.89 0.05 0.03 0.01
Number of contigs 1436 165 1429 4810 11703
CPU time (h) 1.4 253 465 62 0.4
Peak RAM (GB) 4.8 55 27 26 6.5

Table 1: Comparison of assembly statistics of Adineta vaga across different
tools. 31-mer completeness was computed using KAT. BUSCO completeness
was computed against the metazoa odb10 database.
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3 Discussion285

In this study, we present a novel approach for assembling highly precise reads286

through the introduction of Mapping-friendly Sequence Reductions (MSR)287

sketches. This method is implemented in a assembler named Alice, which we288

evaluated on various datasets, including a diploid Adineta vaga genome, a289

challenging mock community comprising five conspecific strains of Escherichia290

coli, a human stool sample and a soil sample. Alice operated an order of291

magnitude faster than competing assemblers while maintaining a low memory292

usage. Moreover, it provided the most complete assemblies for high-coverage,293

strain-rich datasets.294

Despite its advantages, Alice exhibits two significant limitations compared to295

some of its competitors. First, Alice employs conservative graph simplification296

strategies to preserve nodes potentially associated with strain variation, which297

consequently results in reduced contiguity relative to alternative assemblers and298

poorer downstream binning. This limitation is inherent to Alice’s core assembly299

engine rather than the MSR sketching technique itself, therefore the assembly300

engine could be updated. Second, the current implementation struggles in the301

assembly of low-abundance strains302

A promising but vast avenue for enhancing the assembler involves modify-303

ing the MSR function, which we designed to be pseudo-random. For instance,304

we could introduce guarantees based e.g. on syncmers [10] to ensure that at305

least one base is produced for all windows of length w. Another potential im-306

provement could involve exploiting base qualities to estimate and improve the307

quality of the reduced sequences. The authors of [4] demonstrated that alter-308

ing the function can significantly enhance results when aligning reads reduced309

with an MSR of order 2, indicating that the choice of the MSR function has a310

substantial impact on downstream applications. We hypothesize that a care-311

fully selected MSR function could also enable Alice to effectively handle reads312

with higher error rates, although the challenge lies in the vast number of MSR313

functions available for exploration.314

While this study concentrates on using MSR sketching for metagenome as-315

sembly, the technique has far-reaching potential beyond that scope. Because316

assembled genomes typically exhibit very low error rates, MSR sketches could317

be employed for tasks such as indexing or aligning assemblies—e.g., construct-318

ing pangenome graphs. Additional promising applications include SNP calling319

and read alignment, where the efficiency and accuracy of MSR sketching could320

provide substantial benefits.321

4 Methods322

4.1 Reducing input reads323

All reads are initially reduced using a Mapping-friendly Sequence Reduction324

(MSR) provided by Alice. The MSR allows the user to select the order l (default325
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value of 101) and the compression factor c (default value of 20). The l-mers of326

the reads are processed through a function g. This function takes an l-mer as327

input and outputs either a single base, which is appended to the growing reduced328

read, or an “empty” base ϵ, which is not appended to the growing reduced read.329

The function g of the MSR is designed as follows. The l-mer is converted into330

its canonical form, which is either the original l-mer or its reverse complement331

if the reverse complement is lexicographically smaller. g then applies to the332

canonical l-mer a pseudo-random hash function yielding a hash between 0 and333

1 [15]. It distinguishes five cases:334

• if the hash is smaller than 1/2c and the original l-mer is canonical, an A335

is outputted336

• if the hash is smaller than 1/2c and the original l-mer is not canonical, a337

T is outputted338

• if the hash is between 1/2c and 1/c and the original l-mer is canonical, a339

C is outputted340

• if the hash is between 1/2c and 1/c and the original l-mer is not canonical,341

a G is outputted342

• if the hash is between 1/c and 1, ϵ is outputted343

This MSR is combined with a classic homopolymer compression process that344

occurs before all the reads are sketched, at the very beginning of the process,345

to reduce the error rate of the reads.346

4.2 Assembling reduced reads347

Many existing short-read and long-read assemblers were tested to assemble re-348

duced reads, but they did not yield very convincing results, especially to sepa-349

rate haplotypes. We believe this is due to reduced reads having slightly different350

properties compared to regular sequencing reads of equivalent length. For ex-351

ample, errors tend to cluster when c · l >> 1. Most assemblers did not manage352

to assemble at all the reduced reads.353

To address this issue, we developed a simple custom assembler that consists354

of three steps.355

1. Generate an unitig graph with a k-mer length of 31, discarding all k-mers356

seen only once. This is done with BCALM2 [7] (Figure 1a)357

2. Simplify the graph by removing tips and bubbles composed of k-mers seen358

fewer than five times, a classic procedure in assemblers, as used for example359

in [11, 20, 2] (Figure 1b). If several low-coverages bubbles are situated at a360

distance less than 10 · k, they are deleted only when –single-genome mode361

is activated, as they could represent a rare haplotype.362
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3. The final step is to untangle the graph to improve contiguity and dupli-363

cates unitigs that are present multiple times in the genome, following the364

procedure of Unicycler [36]. More precisely, all reads are first aligned on365

the graph (Figure 1 2c). Contigs for which all reads align consensually366

forming a single path on both sides of the contigs are considered single-367

copy contigs. When two single-copy contigs are linked by a set of reads,368

the contigs on the path between the two single-copy contigs are duplicated369

to form a single, long, single-copy contig (Figure 1 2d).370

4.3 Recovering the uncompressed assembly371

The compressed assembly represents the reduced version of the final assembly.372

Inflating this reduced version back to the full assembly is not straightforward,373

as the MSR reduction function is not invertible.374

Our method involves three steps:375

• creating an inventory of k-mers that tile the compressed assembly, using a376

k-mer size of 31 by default. For example, two 3-mers that tile the sequence377

“ACCGTT” are “ACC” and “GTT”;378

• re-running the MSR on all original reads, and each time a tiling k-mer is379

produced, record the corresponding uncompressed sequence. For example,380

we can record that “ACC” corresponds to “GTCGCATGACTGAT” and381

“GTT” to “TCCGACTCATCAGA”; and finally382

• reconstructing the full assembly by concatenating the uncompressed se-383

quences of the tiling k-mers, which would yield in our example “GTCG-384

CATGACTGATCCGACTCATCAGA”.385

4.4 Choice of parameters386

We experimented with different parameter choices for the compression factor387

and the order of reduction on the Zymobiomics Gut Microbiome Standard388

dataset to understand how these parameters influence the final assembly.389

We conducted two experiments: one to assess the effects of the order and390

another to assess the effect of the compression factor. First, we tested compres-391

sion factors of 100, 50, 20, 10, and 5 with an order of 101. Second, we tested392

orders of 11, 21, 51, 101, and 201 with a compression factor of 10.393

The variation of these parameters primarily impacted the completeness of394

the resulting assemblies and the run-times of the pipelines, while their accuracy,395

duplication ratio, and contiguity remained equivalent.396

As expected, the run-time increased with the compression factor, as there397

was more data to assemble. This is illustrated in Figure 6.398

Compressing more the data also had a positive impact on the completeness399

and contiguity of the five highly similar E. coli strains (Figure 6). When in-400

vestigating the 27-mer completeness (not shown), all assemblies had a similar401

amount of missing 27-mers. Hence, the main difference explaining the difference402
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Figure 6: Variation of resource usage and metaQUAST completeness of the
Zymobiomics gut microbiome standard assemblies with different compression
factor and orders. “Rare strains” refer to C. albicans, S. cerevisiae, and S.
enterica. The completeness displayed are arithmetic means of the completeness
of the different genomes of the categories.

in completeness was that repeated regions were more shrunk when the data were403

more compressed, which helped to assemble repeated regions closer to their true404

multiplicity and thereby improved contiguity.405

However, the results represented in Figure 6 show that compression nega-406

tively impacted the completeness of the C. albicans, S. cerevisiae, and S. en-407

terica genomes, which had relatively low coverage (see Supplementary Table 1408

for the coverages). This is because the assembly algorithm requires a sufficient409

number of error-free 31-mers in the compressed reads to produce a complete410

assembly. An error-free compressed 31-mer corresponds to an error-free uncom-411

pressed sequence of average length 31 ∗ c + l without errors. Therefore, as the412

compression factor c increases, the number of correct 31-mers in the reads de-413

creases. For genomes with low coverage, high compression can result in the loss414

of precious 31-mers, leading to insufficient coverage of some regions, hindering415

their assembly.416

The order was found to have relatively little impact on the resulting assem-417

blies. The only significant effect observed was when the order decreased to 11418

and 5, where l/c approached or fell below 1. In these cases, the assembler began419

collapsing highly similar sequences, leading to a decrease in the completeness of420

the five E. coli strains. Despite the fact that the error rate scales approximately421

linearly with l, increasing l did not have a significant negative impact on the422

completeness of the assemblies. This is because the errors in the compressed423

reads cluster in increasingly large clusters, but the error-free regions between424

these clusters diminish in size only slowly with l.425

4.5 Data access & reproducibility426

Alice is freely available on github at github.com/RolandFaure/alice-asm.427

All the datasets used for benchmarking Alice are available publicly, under428

accession numbers SRR13128013 for the Zymobiomics Gut Microbiome Stan-429

dard, SRR28996637 for the human gut microbiome dataset, ERR15289804430

for the soil and BioProject PRJNA1335825 for Adineta vaga. Zymo-HiFi431
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mock reference genomes are available at https://s3.amazonaws.com/zymo-432

files/BioPool/D6331.refseq.zip433

Assemblies were run with Alice-asm version 0.6.41, hifiasm 0.24.0-r702, Flye434

2.9.5-b1801, metaMDBG 1.0, LJA commit 99f93262c. All assemblies and com-435

mand lines used are available in Zenodo, DOI 10.5281/zenodo.17179435.436
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[11] Barış Ekim, Bonnie Berger, and Rayan Chikhi. “Minimizer-space477

de Bruijn graphs: Whole-genome assembly of long reads in minutes478

on a personal computer”. In: Cell Systems 12 (Sept. 2021). doi:479

10.1016/j.cels.2021.08.009.480

[12] EMBL-EBI. ENA website. https://www.ebi.ac.uk/ena/browser/481

about/statistics. Accessed: 2025-09-15.482

[13] Xiaowen Feng et al. “Metagenome assembly of high-fidelity long reads483

with hifiasm-meta”. In: Nature Methods 19 (June 2022), pp. 1–4. doi:484

10.1038/s41592-022-01478-3.485

[14] Jean-François Flot et al. “Genomic evidence for ameiotic evolution in the486

bdelloid rotifer Adineta vaga”. In: Nature 500.7463 (2013), pp. 453–457.487

doi: 10.1038/nature12326.488

[15] Parham Kazemi et al. “ntHash2: recursive spaced seed hashing for nu-489

cleotide sequences”. In: Bioinformatics 38.20 (2022), pp. 4812–4813.490

[16] Marek Kokot, Maciej D lugosz, and Sebastian Deorowicz. “KMC 3: count-491

ing and manipulating k-mer statistics”. In: Bioinformatics (Oxford, Eng-492

land) 33 (Jan. 2017). doi: 10.1093/bioinformatics/btx304.493

[17] Mikhail Kolmogorov et al. “Assembly of long, error-prone reads using494

repeat graphs”. In: Nature Biotechnology 37.5 (2019), pp. 540–546. doi:495

10.1038/s41587-019-0072-8.496

[18] Mikhail Kolmogorov et al. “metaFlye: scalable long-read metagenome as-497

sembly using repeat graphs”. In: Nature Methods 17 (Nov. 2020), pp. 1–8.498

doi: 10.1038/s41592-020-00971-x.499

[19] Heng Li. “Minimap and miniasm: fast mapping and de novo assembly for500

noisy long sequences”. In: Bioinformatics 32.14 (2016), pp. 2103–2110.501

[20] Antoine Limasset, Jean-François Flot, and Pierre Peterlongo. “Toward502

perfect reads: self-correction of short reads via mapping on de Bruijn503

graphs”. In: Bioinformatics (Oxford, England) 36 (Feb. 2019). doi: 10.504

1093/bioinformatics/btz102.505

[21] Vijini Mallawaarachchi and Yu Lin. “MetaCoAG: Binning Metagenomic506

Contigs via Composition, Coverage and Assembly Graphs”. In: Research507

in Computational Molecular Biology. Ed. by Itsik Pe’er. Cham: Springer508

International Publishing, 2022, pp. 70–85. isbn: 978-3-031-04749-7.509

17

https://doi.org/10.1038/s41592-023-01940-w
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1016/j.cels.2021.08.009
https://www.ebi.ac.uk/ena/browser/about/statistics
https://www.ebi.ac.uk/ena/browser/about/statistics
https://www.ebi.ac.uk/ena/browser/about/statistics
https://doi.org/10.1038/s41592-022-01478-3
https://doi.org/10.1038/nature12326
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1093/bioinformatics/btz102
https://doi.org/10.1093/bioinformatics/btz102
https://doi.org/10.1093/bioinformatics/btz102
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