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Abstract

Motivation: Recently introduced, linked-read technologies, such as the 10x chromium system, use microfluidics to
tag multiple short reads from the same long fragment (50-200 kb) with a small sequence, called a barcode. They are
inexpensive and easy to prepare, combining the accuracy of short-read sequencing with the long-range information
of barcodes. The same barcode can be used for several different fragments, which complicates the analyses.

Results: We present QuickDeconvolution (QD), a new software for deconvolving a set of reads sharing a barcode,
i.e. separating the reads from the different fragments. QD only takes sequencing data as input, without the need for
a reference genome. We show that QD outperforms existing software in terms of accuracy, speed and scalability,
making it capable of deconvolving previously inaccessible data sets. In particular, we demonstrate here the first ex-
ample in the literature of a successfully deconvoluted animal sequencing dataset, a 33-Gb Drosophila melanogaster
dataset. We show that the taxonomic assignment of linked reads can be improved by deconvoluting reads with QD

before taxonomic classification.

Availability and implementation: Code and instructions are available on https://github.com/RolandFaure/

QuickDeconvolution.
Contact: roland.faure@irisa.fr

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1. Introduction

1.1 Linked-read sequencing

Since the discovery of the role of DNA in the transmission of genetic
information (Avery et al., 1944), it has been understood that obtain-
ing the genomes of organisms is essential for understanding their
biology. Thus, great efforts have been made to extract genomic in-
formation from a variety of organisms, including humans
(International Human Genome Sequencing Consortium, 2001).

The first modern sequencers, with which scientists were able to
recover the precise sequence of (small) strands of DNA called reads,
appeared around 1970 and were named after Sanger, the scientist
who created the technique (Sanger et al., 1977). Since then, a wide
variety of techniques have been proposed. Those still in use can be
classified into two broad categories: (i) short-read sequencers, which
are capable of producing a large quantity of short reads (<300 bp)
with a very low error rate (usually <1%) and low cost; (ii) long-read
sequencers, which are capable of producing much longer reads
[more than 10 kb and up to 2 million bp in extreme cases (Payne
et al., 2019)] but with a generally much higher error rate; the sam-
ples are also considerably more difficult to prepare.

©The Author(s) 2022. Published by Oxford University Press.

Linked-read technologies were developed as a compromise
between short, accurate reads and long, inaccurate reads; 10x
sequencing is its oldest and most common form, but today a variety
of new techniques are emerging, such as LoopSeq, TELL-Seq and
BGI long fragment reads. To produce linked reads, long DNA frag-
ments are separated and sequenced with short reads. Short reads
typically cover 10-20% of the fragment length. A ’barcode’ is
attached to the end of each read in the form of a small DNA se-
quence. All reads from the same fragment share the same barcode.

1.2 The barcode deconvolution problem

Using the terminology defined in previous papers (Danko et al.,
2019; Mak et al., 2021), the set of reads sharing the same barcode
will be referred to as a read cloud. The barcodes provide implicit
long-range information: two reads sharing the same barcode origin-
ate with high probability from the same fragment and are thus ‘not
far away’ on the DNA strand. This long-range information can be
exploited by appropriate software while being much cheaper and
easier to prepare than long-read sequencing (Wang ez al., 2019).
Typically, linked reads can be used to phase haplotypes (Zheng
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et al., 2016) or to propose better de novo genome assemblies. For in-
stance, a reference for the pepper genome was provided in 2018
using linked reads (Hulse-Kemp et al., 2018).

A new computing challenge arising from these technologies is
that the total number of barcodes is limited. 10x sequencing tech-
nology, for example, provides only a few million barcodes. Because
the total number of fragments routinely exceeds this number, barco-
des must be used multiple times for many different fragments.
This complicates the exploitation of the data. The barcode deconvo-
lution problem can be defined as the separation of the reads of the
different fragments present in each barcode. The ultimate goal is to
obtain ‘enhanced barcodes’, where each barcode identifies only the
reads of a single DNA fragment. Downstream methods are then
much more efficient than raw barcodes, as shown by Shajii et al.
(2018).

1.3 State of the art
Two main approaches can be used to deconvolve a set of barcoded
reads: reference-based or reference-free approaches.

When the content of the sequencing experiment is roughly
known in advance, and reference genomes are available, for example
when sequencing a model organism such as Human or Drosophila,
a reference-based approach can be used with the EMA software
(Shajii et al., 2018). EMA maps all reads from each read cloud to a
reference genome (or several in the case of metagenomic data). Since
reads from the same fragment are close to each other on the
sequenced genome(s), there is a good probability that they will also
map close to each other on the reference genome(s). Although they
often provide good results, reference-based approaches are not al-
ways possible or desirable. Good quality references are not always
available and sometimes the species in the sample are not known in
advance. Moreover, the result will be biased by the reference
genome(s): using two different references may give two different sol-
utions. In this article, we present an approach without reference,
free of these biases.

The first reference-free barcode deconvolution software was
published in Danko et al. (2019), under the name Minerva. It uses
the fact that samples are sequenced with some coverage, i.e. that all
portions of the genome are sequenced multiple times, usually more
than 20 times. Many fragments with different barcodes will there-
fore come from the same region, which Minerva can exploit. The
principle of Minerva is the same as that of our software,
QuickDeconvolution (QD), and will be deeply discussed later. The
paper established a strong theoretical foundation for the method
and showed its application on two sets of mock metagenomes.
However, the method remained too slow to be used on large or even
medium-sized datasets and is referred to by its authors as a ‘proof of
concept’ algorithm.

Very recently, another reference-free software from the authors
of Minerva has been proposed under the name Ariadne (Mak et al.,
2021). Based on a totally different concept, Ariadne starts by doing
a complete assembly of the de-Bruijn graph of reads using the
SPAdes assembler (Prjibelski ez al., 2020), ignoring the barcodes. It
then proceeds barcode by barcode. The key idea is that two reads
coming from the same fragment must not be far from each other on
the assembly graph. Ariadne therefore considers that if two reads
sharing the same barcode are close on the assembly graph, then they
come from the same fragment. Minerva and Ariadne were only pro-
ven to be capable of deconvolving metagenomic datasets.

1.4 Contribution
We present QD, a reference-free software to solve the problem of
barcode deconvolution. QD takes barcodes in fastq format as input
and produces an enhanced fastq file, where the barcodes are marked
with an additional number indicating the subgroups in the read
cloud.

Based on the same principle as Minerva, QD brings two crucial
improvements: (1) an optimized algorithm with parallel implemen-
tation; (2) an additional clustering step, offering better accuracy.

We show that QD outperforms other reference-free barcode de-
convolution software in both speed and accuracy. By lifting some re-
source limitations, QD can deconvolve previously intractable
datasets. The higher accuracy of the algorithm allows the program
to deconvolve single-species repeat-rich datasets. Here, we provide
the first example in the literature of a deconvoluted animal dataset,
from the species Drosophila melanogaster. The availability of refer-
ence genomes allowed us to confirm the quality of the deconvolu-
tions proposed by QD.

2. Algorithm

2.1 Principle

The basic principle of the QD algorithm is the same as that of
Minerva (Danko ez al., 2019). It is based on the fact that all regions
of the genome are cloned during sequencing and will be sequenced
multiple times: many fragments will therefore come from the same
region and share part of their sequence. If two fragments share the
same sequence over part of their length, they are called overlapping.
Minerva and QD make use of the fact that several overlapping frag-
ment reads will probably overlap. In other words, multiple reads of
a fragment will likely overlap with multiple reads of an overlapping
fragment with a different barcode. The fragments of a barcode can
then be distinguished by the set of barcodes they overlap.

More precisely, each barcode is processed separately. For each
barcode, let’s call it anchor, a bipartite graph is constructed, with all
the anchor reads on one side, and all the barcodes of the experiment
on the other side. For each read from the anchor, the set of all over-
lapping reads (with an overlap of > k bp) in the sequencing data is
found. Links are added in the graph between each read and the indi-
vidual barcodes of its overlapping reads. Once all the anchor reads
are processed, the graph is complete. The bipartite graph is then
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Fig. 1. Illustration of the principle behind QD and Minerva. Top: from the genome,
reads are sequenced and barcoded. Barcodes are represented as colors. The 10 reads
of the grey cloud, that actually come from two different fragments (1234 and
5678 910), will be deconvolved. Each grey read is compared to all the other reads
of the dataset. A bipartite graph is built, linking each read to all the barcodes it over-
laps. It is then converted to a graph between all the reads from the barcode. The
strength of a link is the number of shared barcodes the two reads overlap. Minerva
then outputs as result all the connected components of the graph, while QD clusters
the graph
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converted into a graph containing only the reads of the anchor: two
reads are linked by a link of strength 7 if they overlap with 7 shared
barcodes. Since reads from the same fragment tend to overlap with
the same barcodes, it is expected that this graph can then be clus-
tered, with each cluster containing reads from a single fragment.
This algorithm is illustrated in Figure 1.

2.2 Mathematical justification

The mathematical justification of the model has been very well
described in Danko et al. (2019) for metagenomic samples. We will
propose thereafter a natural extension in the case of a multi-
chromosomic genome. Let us justify the key assumption that, within
a barcode, two reads from the same fragment likely overlap more
shared barcodes than two reads from two different fragments.

Let us consider that fragments of length L are drawn with a uni-
form probability across the genome. Let p be the proportion of each
fragment covered by reads, typically 10-20% in the case of 10x
data. Enough fragments are drawn to cover the genome with read
coverage ¢ (thus fragment coverage = ¢/p). In total, N,,; different
barcodes are attached, with on average 7 molecules per barcode.

Two reads from the same fragment distant by / < L on the strand
overlap on average with

common fragments. Let P be the probability that a read from a com-
mon overlapping fragment overlaps one of the two reads. P* is ap-
proximately the probability that two reads from the common
fragment overlap the two reads. Consequently, two reads from the
same fragment overlap on average p; * P? shared barcodes.

Two reads with the same barcode but from two far away frag-
ments overlap on average

PO O et
2 P |p n*Nmz*[%

common fragments. Indeed, the first read overlaps on average with g
fragments, thus with roughly < different barcodes (let these barcodes

be the readl-barcodes). All other fragments are now called the far-
away fragments. The total number of far-away fragments with a
given read1-barcode attached is on average # — 1. The total number

of far-away fragments is 7 * Nyor — f). The second read overlaps with

s fragments, to which roughly g different read2-barcodes are
attached. The probability of a given read1-barcode being also a

e € n—1
read2-barcode is RS v Consequently, the two reads overlap on

average with py * P2 shared barcodes.

In linked read experiments, the order of magnitude of N,,, is at
least 10°, while the order of magnitude of ¢/p is at most 10°.
Consequently, p1 > p2: two reads close on the same fragment will
overlap on average many more shared barcodes than two reads from
two different fragments.

While the estimated link strengths in this model tend to ensure
very reliable linkages, it is important to keep in mind that in our
model, an overlap between two reads means that both reads come
from the same region. This is usually a false assumption, as repeated
regions are common in genomic data and will cause many artifac-
tual links between reads. The graph should therefore be handled
with care.

2.3 Read similarity

For each barcode, all reads are processed iteratively. For each read,
the set of all overlapping reads in the dataset must be found. Since
there are millions of fragments in the dataset, finding this set is one
of the key difficulties of the program. The problem is well known in
the genome assembly community, where many overlapping reads
must be assembled into longer DNA sequences (Li et al., 2012). The
strategy implemented by QD is a well-known strategy based on
k-mers.

k-mers are subsequences of length k present in the reads. In a
preliminary indexing phase, a dictionary is constructed, reporting
for the k-mers in the dataset the list of all their occurrences in the
reads. In our experiments, the value of k has been set to 20.

To speed up the indexing process, QD indexes at first sight only
a user-defined fraction of k-mers d. A k-mer is indexed if it is found
among the smallest d fraction of all possible k-mers by lexicograph-
ical order. For example, if d=0.25, all the k-mers starting with ‘A’
will be indexed. If no k-mers are indexed in a window of size w
(user-specified), k-mers among the smallest 2 x d fraction of k-mers
are indexed in this window. If still no k-mers are found in the win-
dow, k-mers among the smallest 3 * d fraction of k-mers are indexed
there, etc. This ensures the fundamental property that all stretches
of length w on any read contain at least one indexed k-mer, and thus
that two reads overlapping by w bases will share at least one
indexed k-mer, even in highly GC-biased regions. On our tests, the
precision of the deconvolution started decreasing when d went
below 1/8.

To each read is attached the set of its indexed k-mers. To maxi-
mize the speed of execution and avoid the costly process of align-
ment, QD never checks if two reads overlap. It goes through the set
of indexed k-mers of a read and finds in the index all other reads
containing these k-mers. Two reads sharing at least three indexed
k-mers are flagged as ‘similar’.

2.4 Graph building

For each barcode, a graph linking all the reads in the cloud is con-
structed, as described above: first, a bipartite graph between the
reads in the cloud and the barcodes is built, and then it is converted
into a graph containing only the reads in the cloud. Two reads are
linked if they respectively overlap with two reads in the dataset that
have identical barcodes. As demonstrated above with a simple math-
ematical model, two reads from the same fragment will be linked
with a much higher probability than two reads from two different
fragments.

Tests on single-species datasets show that repeated regions can
create false positive links in the graph. This is because a read con-
taining a repeated region will share k-mers with all reads containing
that repeated region, including all those that are actually far away
on the genome. Repeated k-mers are present in many more reads
than average k-mers, creating hubs of connections and many false
positive links in the graph. We observed that de-indexing k-mers
present many more times than the average number of times in the
dataset greatly improves the quality of deconvolution on repeat-rich
datasets, while not affecting deconvolution on repeat-poor datasets.
The best results were obtained by de-indexing k-mers present twice
the average number of times or more. The disadvantage is that some
reads are not indexed at all, especially in repeated regions, although
this is mitigated by the fact that only one of the two reads in the pair
needs to be indexed to be deconvoluted. The worst-case scenario for
assembly would be that multiple fragments with the same barcode
lie within large segmental duplications and thus could not be distin-
guished. The effect of de-indexing reads is evaluated (Supplementary
Fig. S1), showing that this procedure is necessary for the repeat-rich
dataset we tested.

2.5 Graph clustering

The read graph must then be clustered into an unknown number of
enhanced read clouds. QD uses the Chinese whispers algorithm, a
clustering method introduced in NLP search (Biemann, 2006). It
works as follows: at the beginning of the algorithm, each read is
contained in its own cluster of size 1. The reads are then processed
in a random order until convergence. Each read inherits the cluster
that is seen most often among all neighbors, weighted by the
strengths of the links (in case of several equal possibilities, one is
chosen randomly). This algorithm is known to converge quickly to a
few stable clusters, especially if the diameter of the graph is small
(i.e. any two vertices are separated by few edges), which is usually
the case in our read graphs. In the worst case, the clustering can os-
cillate, but this is marginal in practice for QD.
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This clustering method has the great advantage of being
parameter-free and agnostic regarding the final number of clusters.

This graph clustering method is a novelty compared to what was
done in Minerva. Minerva removes links weaker than a certain
threshold on the read graph and then considers the different con-
nected components of the graph as separate clouds. Danko et al.
showed that the method could work to separate fragments from dif-
ferent species in metagenomic samples. However, when trying to
separate fragments from a single genome, we found that it was diffi-
cult to fully separate clusters due to redundancies and small repeated
elements present across the genome. It became increasingly difficult
as sequencing depth or read quality decreased. Therefore, we opted
for a slightly more expensive but more flexible approach that allows
for residual false positives. Knowing that the clustering step will
compensate for some errors, we could implement shortcuts to make
the graph construction step faster.

Finally, all reads in a cloud that are not related to the graph are
not grouped separately but are marked with a special tag ‘0’, to indi-
cate to that clustering was ineffective at that location. This can hap-
pen when a read is too noisy to be overlapped with anything else, or
if the read is in a highly repeated region and all of its k-mers are not
indexed.

2.6 Parallelization

An imperative for accelerating QD is to parallelize the program. The
goal of parallelization is to distribute the work among the different
threads present in a compute node. A perfectly parallelized program
is able to run ¢ times faster when # threads are available.

The algorithm runs in four distinct phases: loading the data from
the input file, creating the dictionary, deconvolving the read clouds
and writing the data to an output file. The first and last phases being
negligible in time compared to the other two, they are not parallel-
ized at all and processed by a single thread.

The third phase, where each graph is built and clustered, is trivi-
ally parallelizable. Threads can manage separate clouds: build their
graphs, cluster them and store the result. Threads compete only for
access to the dictionary, which is not copied ¢ times to keep RAM
usage reasonable.

The construction of the dictionary is the most difficult phase to
parallelize. Indeed, the threads cannot simply distribute the reads be-
tween them: if the same k-mer is found on two threads at the same
time, the threads cannot update the dictionary simultaneously (if
two threads write the same entry at the same time, an entry will
probably be overwritten). If the k-mer has not been seen before, this
can even crash the program. The trick is to divide the k-mers be-
tween the threads: for example, thread 1 takes care of k-mers ending
in A or C while thread 2 takes care of k-mers ending in G and T.
Each thread must examine all reads but does not index all k-mers.
To avoid recalculating in each thread the set of sparse k-mers, this
calculation is done beforehand for all reads, in parallel. We end up
with two sub-phases: first, the threads distribute the reads among
themselves and compute all the sparse k-mers; once this is done, the
threads distribute the k-mers among themselves and go through all
the reads to index them.

3. Datasets and evaluation metrics

3.1 Datasets
QD was benchmarked on five datasets.

The first one is a simulated dataset based on the genome of
Escherichia coli. To introduce a little complexity and because linked
reads have often been used to phase haplotypes, we created a ‘fake
diploid’ E.coli by duplicating the genome and introducing a 1% dif-
ference between the two chromosomes. To simulate 10x sequenc-
ing, fragments of 70-130 kb were drawn uniformly along the
genome. 15% of the length of each fragment was covered by paired-
end 150bp reads with 1% error. Barcodes were then randomly
assigned to all these fragments. Enough fragments were drawn to
obtain a final read coverage of 50. The total number of barcodes

available was computed to be four times less than the total number
of fragments. That resulted in a 0.6-Gb dataset.

We also created a simulated Homo sapiens dataset. 10x
sequencing was simulated using LRSim (Luo et al., 2017), a linked-
read simulator built to reproduce biases and errors of linked-read
sequencing. We chose to run the simulator over chromosome 1 of
the genome of H.sapiens. The sequenced dataset is 7 Gb.

The deconvolution software was also tested on the sequencing of
two metagenomic mock communities (i.e. communities where the
mix of species is precisely known). The first one was a 10x sequenc-
ing run on the metagenomic sample MSA1003, a mix of 10 species
sold by the ATCC company. It resulted in 108 Gb of data, published
in the paper (Zhang et al., 2020). The second one was a LoopSeq
sequencing run on a discontinued ATCC mix of five species. The
size of the dataset is 9 Gb. To measure how well the software decon-
volved the reads, the solution of the deconvolution was approxi-
mated with an approach similar to EMA: all the reads were mapped
to the set of reference genomes using Bowtie2. Reads that had the
same barcode and mapped <100 kb away on the same genome were
considered as coming from the same fragment.

The last dataset comes from the 10x sequencing of a single ani-
mal species, D.melanogaster. It totaled 33Gb of sequencing data.
The quality of deconvolution was assessed by the same method as
with the metagenomic ATCC datasets. Seventy-four percent of the
reads mapped uniquely on the reference genome, and overall 60%
of the reads were identified to their fragment of origin with good
confidence. Only the deconvolution of those reads was evaluated.

3.2 Evaluation metrics

In this section, a ‘reference cloud’ will refer to a set of reads coming
from a single fragment according to the reference solution and
‘deconvolved cloud” will refer to a set of reads proposed by a soft-
ware as coming from one fragment.

To evaluate the deconvolution, two metrics are proposed, a clas-
sical approach for clustering evaluation. Indeed, good deconvolution
is a compromise between two extremes. On one hand, all reads
from a reference cloud must be kept together in the same decon-
volved cloud (otherwise the reads are over-deconvoluted). On the
other hand, all reads from a deconvoluted cloud must come from a
single reference cloud (otherwise there are still several fragments per
cloud, the reads are under-deconvoluted). We thus propose:

* The over-deconvolution entropy. It evaluates the disorder within
each reference cloud by using the classical entropy formula
— >, pi * log(pi), where p; is the proportion of reads of the refer-
ence cloud contained in deconvolved cloud i. If all reads of the
reference cloud have been kept together in one deconvolved
cloud, the over-deconvolution entropy is zero.

* The under-deconvolution entropy. It evaluates the disorder with-
in each deconvolved cloud by using the classical entropy formula
=2 bj * log(p;), where p; is the proportion of reads of the
deconvolved cloud contained in reference cloud ;. If the deconvo-
lution is complete, and the deconvolved clouds contain only
reads coming from one reference cloud, the under-deconvolution
entropy is zero.

A histogram of the over-deconvolution entropies of all reference
clouds and of the under-deconvolution of all deconvolved clouds is
drawn, the aim being to concentrate the distributions around zero.
Quite logically, non-deconvoluted data (where the clouds just cor-
respond to original barcodes) is under-deconvoluted but not over-
deconvoluted. A graphical example on mock datasets is provided
Figure 2.

4. Results

All results were obtained by running all software on a server housing
16 Intel Xeon CPUs with four cores each, running at 2.7 GHz. 3.1
TB of RAM was available.
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QD, Minerva and Ariadne were run on the five datasets.
Minerva and Ariadne were run with parameters proposed on
GitHub. QD was run using £ =20 and indexing 1 over 8 k-mer on
average.

The Drosophila, human and ATCC 10x datasets were too big
for Minerva, which was killed after running 15 days. We were un-
able to run Ariadne on these three datasets because it generated
huge intermediary files (>12T), saturating the space available.

On E.coli dataset, Minerva proposed an enhanced barcode
(sometimes identical to the original barcode) for only 1.4% of the
reads, Ariadne for 69% and QD more than 99.9%. The most prob-
able explanation for the low rate of reads deconvolved by Minerva
is that the clusters of reads were slightly inter-connected, so Minerva
could not deconvolve those without a clustering step.

On the ATCC loopseq dataset, Minerva proposed a deconvolu-
tion for <0.05% of the reads, as already reported in Mak ez al.
(2021) and was thus not evaluated. Ariadne and QD classified more
than 99% of the reads.

QD proposed a deconvolution for 81% of the reads for
Drosophila, 94% of the reads for ATCC 10x and more than 99.9%
for H.sapiens.

Only the deconvolved reads have been taken into account to
measure the quality of the clustering for each method.

4.1 Accuracy

In terms of deconvolution, QD proves superior to the other tools.
Figure 3a and e shows that deconvolution with QD greatly improves
the under-deconvolution entropies. Minerva shows comparable per-
formance on E.coli, and Ariadne on ATCC Loopseq. Ariadne, how-
ever, hardly improved the deconvolution of the raw reads of E.coli.
This improvement might be due to the fact that the assembly graph
of a mix of two strains is very tangled. Thus, many regions far away
on the genome are close on the assembly graph and cannot be sepa-
rated by Ariadne.

Figure 3(b—d) shows that in all deconvolutions proposed by
Ariadne and QD a non-negligible number of deconvolved read
clouds are slightly over-deconvoluted, i.e. have a few missing reads.
For QD, they represent generally two or three reads that have been
clustered separately from the rest of the cloud. In the human and
loopseq cases (Fig. 3d and c), there is an over-deconvolution peak
around an entropy of 0.7. It corresponds to reads from the same

Under-deconvoluted
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Fig. 2. Illustration of over-deconvolution and under-deconvolution entropies on three mock deconvolutions. The ‘good’ deconvolution corresponds to a slightly noisy perfect
deconvolution. In the ‘under-deconvoluted’ solution, two reference clouds were assigned to each improved barcode (instead of one). In the ‘over-deconvoluted’ solution each
reference cloud was split between two improved barcodes.
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Fig. 3. Evaluations of the quality of the deconvolution on the different datasets with different software. (a) Under-deconvolution entropy of the deconvolved E.coli dataset
using different software. (b) Over-deconvolution entropy of the deconvolved E.coli dataset using different software. (c) Over- and under-deconvolution entropies of the ATCC
Loopseq dataset after deconvolution with Ariadne and QD. (d) Over-deconvolution by QD of three datasets. (e) Under-deconvolution of datasets before and after being decon-
voluted by QD
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Fig. 4. Run time (in minutes) of the different deconvolution algorithms on the E.coli E
dataset. Axes have logarithmic scales. The dashed black line represents the expected e x
speed of QD if the parallelization was ideal
fragment split in two clouds of roughly equal size, corresponding to
the two ends of the fragment. The resulting clouds remain neverthe- loty x ¥
less valid, in the sense that all reads within each cloud are actually 1 2 2 8 1 2
close to each other on the genome. Number of threads
(b),
4.2 Performance + Human
Speed was put forward by the authors of Minerva as the main limi- Drosophila
tation of their algorithm. Hence, it was one of the main focuses i
when developing QD. Run time of the different algorithms was g
measured using the command time of Linux system. We compared & 25 +
the algorithms mainly on the E.coli dataset. The results are plotted S
in Figure 4. The program has been run with 1, 2, 3, 8 and 16 ; 20
threads. g +
For one or two threads, QD and Ariadne have nearly identical i
run tim, and both run roughly twice as fast as Minerva. When +
increasing the number of threads the run time of QD decreases al- Y +
most ideally, at least up to 16 threads. Ariadne does not scale well, s y - : . .
1 2 4 8 16 32

since it is only twice as fast with four threads and does not seem to
accelerate at all beyond. We end up with an order of magnitude of
difference in run time when running Ariadne and QD with 16
threads. RAM usage was comparable across the tools (Figure 5).

We conducted the further investigation on the effect of parallel-
ization on the human and Drosophila datasets. Figure 6a is a plot of
the speed-up of QD, i.e. the acceleration compared with the single-
thread reference time. For QD, the parallelization becomes less
interesting beyond 16 threads. This is an expected behavior: as
threads begin to compete for memory access, parallelization
becomes less interesting.

RAM usage was significant: for the Drosopbila dataset, the
RAM usage ranged from 459 to 1053 GB, while it ranged from 88
to 158 GB for the H.sapiens dataset. RAM usage tends to increase
with the number of threads, even though all threads use a common
memory space and that theoretically no extra information is stored.
The scale-up of memory space used by QD is plotted in Figure 6b,
showing the increase of RAM used with multiple threads compared
to the reference single-threaded QD algorithm.

4.3 Application
Read clouds can be used to improve the taxonomic assignment of
short reads. When classifying a set of short reads, many of them can-
not be assigned to a low taxonomic rank. However, all reads in a
fragment are from the same organism. This can help promote reads
to lower ranks: a read can be promoted to a lower taxonomic rank
that contains reads with the same barcode, provided there are no
conflicts between multiple lower ranks. Conflicts occur when mul-
tiple fragments of closely related species have the same barcode.
Deconvoluted read clouds reduce the probability of having conflicts
between multiple ranks, thus improving taxonomic assignment.

We implemented this strategy in a small, freely available script
(github.com/RolandFaure/cloudClassifier), compatible with any

Number of threads

Fig. 6. Behavior of multithreaded QD on the human and Drosophila datasets. (a)
Speed-up of QD on the human and Drosophila datasets. Speed-up is defined as ref-
erence run time over run time. (b) Scale-up of the RAM usage of QD on the human
and Drosophila datasets. Scale-up is defined as reference RAM usage over RAM
usage

classifier. The reads in the ATCC 10x dataset were classified by tax-
onomy using Kraken2 (Wood ez al., 2019), a popular tool. Read as-
signment was then enhanced using either non-deconvoluted read
clouds or QD deconvoluted read clouds. The result is displayed in
Figure 7. Mis-attributed reads accounted for <1% of the reads in all
cases and are not shown. The use of deconvolved read clouds pro-
vides strain-resolved taxonomic assignment for significantly more
reads than non-deconvolved read clouds.

Genome assembly and scaffolding are other classic applications
of linked-read technologies. We expect both of these applications to
be enhanced by deconvolution. Assemblers [e.g. cloudSpades
(Tolstoganov et al., 2019) and Supernova2.0 (Visendi, 2022)] and
scaffolders [e.g. ARCS (Yeo et al., 2018) and ARKS (Coombe et al.,
2018)] link draft contigs based on the number of barcodes they
share. If unlucky, two contigs may contain multiple pairs of frag-
ments sharing the same barcode. This could confuse the assembler/
scaffolder. This problem will be largely mitigated if the reads have
been deconvoluted beforehand.

5. Discussion

We presented QD, a new software addressing the problem of bar-
code deconvolution. Based on the same theoretical background as
Minerva, it introduces a clustering step in the algorithm, where
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Fig. 7. Proportion of reads assigned to each rank in the ATCC dataset. The three columns correspond to ignoring barcode information, using raw barcode information and

using deconvolved barcode information

Minerva only computed connected components. In addition, efforts
have been made to make QD fast and scalable. Today, QD outper-
forms all other reference-free deconvolution tools in terms of speed
and accuracy. We show that it is now possible to deconvolve data-
sets from single species with complex and repetitive genomes.

The priority to extend this work would be to re-think the index
structure to reduce RAM usage. Indeed, the RAM usage went over
1000G on the Drosophila and the metagenome datasets, which con-
tained respectively 33 and 111 Gb. Bigger datasets could easily be
imagined: for example, a 50-fold coverage of a diploid human
would generate ~300 Gb of data.
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