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The SRA database

  

SRA: All public sequencing reads, 50 PBases (as of Dec 2023)

Slide Credits: Teo Lemane
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The Logan project

  

ACAGCAGT
    CAGTCGTA

CGTATAA

ACAGCAGT
    CAGTCGTA
        CGTATAA

ACAGCAGTCGTATAA

Raw reads Contigs/Unitigs

For all accessions

27 millions accessions, 50PB

27 millions accessions, ~1PB

Logan
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Our problem: comparing all metagenomes

  

I want do an all-vs-all comparison 
of all 5M metagenomes of Logan!

David Koslicki
September 2025

▶ Phase 1: Compute all-vs-all distance between metagenomes
using Logan's unitigs

▶ Phase 2: Find patterns in metagenomes
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It's a big problem!

▶ 5M metagenomes: 100TB sequences

▶ All-vs-all means 5M×5M = 25,000 billion comparisons

▶ Use Jaccard index as a distance
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First try: sourmash

  

Let’s try with Sourmash

David Koslicki
September 2025

▶ Sourmash: take 1/1000 k-mer, measure Jaccard on this sketch

▶ Estimated total time it will take: 15 CPU.years
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First try: sourmash

  

Let’s try with Sourmash

David Koslicki
September 2025

Wow, that’s slow

▶ Sourmash: take 1/1000 k-mer, measure Jaccard on this sketch

▶ Estimated total time it will take: 15 CPU.years

▶ The problem: even taking 1/1000 k-mer, sketches get big
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First try: sourmash

  

Let’s try with Sourmash

David Koslicki
September 2025

Wow, that’s slow

Could we find something faster?

▶ Sourmash: take 1/1000 k-mer, measure Jaccard on this sketch

▶ Estimated total time it will take: 15 CPU.years

▶ The problem: even taking 1/1000 k-mer, sketches get big
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Huge all-vs-all Jaccard computation: existing methods

▶ Based on �xed-size sketches

▶ MinHash (e.g. Mash)

▶ HyperLogLog (e.g. Dashing2)

▶ DotHash / Random projections (e.g. Hypergen)
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DotHash/random projections: idea

  

CAC,AGC,TTT,GCA,CAT

Set of k-mers
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DotHash/random projections: idea

  

CAC,AGC,TTT,GCA,CAT

+1 +1 +1-1 +1

hash each to -1 or +1

=

3

sum

This is my 
sketch !!

Set of k-mers

What are you going 
to do with this ??

sceptical guy
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DotHash/random projections: idea

  

Human gut sequencing Soil sequencing

sketch

-276 -98
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DotHash/random projections: idea

  

Human gut sequencing Soil sequencing

sketch

-276 -98

unbiased estimator
intersection size: -276 x -98 = 27048 k-mers

Rayan Chikhi, 
November 2025

No way!
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DotHash/random projections: idea explanation

  

AAA,CCC,TTT AAA,CCC,ATA,CGA

+1 -1 -1 +1 -1 -1 -1

-1 -2

-1 x -2 = (+1-1-1)x(+1-1-1-1)

= =
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DotHash/random projections: idea explanation

  

AAA,CCC,TTT AAA,CCC,ATA,CGA

+1 -1 -1 +1 -1 -1 -1

-1 -2

-1 x -2 = (+1-1-1)x(+1-1-1-1)

= 1x1 + -1x-1 + 1x-1 + 1x-1 + 1x-1 + … + -1x-1

=  |A n B|    + sum of random -1 and +1, on average 0

= =
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DotHash: in practice

▶ Let's try to compute the Jaccard of 30k pairs of sets using this
method

▶ It works on average, right?
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DotHash: in practice

▶ For each pair of datasets, using 10 di�erent hash functions and
taking the mean

▶ It works better!
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DotHash: in practice

▶ For each pair of datasets, using 2048 di�erent hash functions
and taking the mean

▶ It works!
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DotHash: the full method
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=sum and divide by √d
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▶ Let's benchmark the time for all-vs-all jaccard computation
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Comparison with other sketching techiques

▶ True vs estimated Jaccard on 35k real datasets

(a) DotHash (d=1800) (b) HyperLogLog (S=2048)

▶ Di�erent sketching techniques have di�erent error patterns

▶ Let's calibrate the benchmark
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Calibrating the benchmark

▶ We measured the error on 35k real datasets

  

Same error at Jaccard 0.2

▶ Let's benchmark times & memory
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Time benchmark of the sketching techiques

▶ Benchmark on 35k real metagenomes

▶ Extrapolate the time it would take for the 5M metagenomes
and for all Logan

35k genomes 5M genomes Logan
Method (extrapolated) (extrapolated)

Sourmash 8 CPU.hours - -
Mash 4.7 CPU.hours 10 CPU.years 322 CPU.years
Dashing2 12 CPU.minutes 139 CPU.days 13 CPU.years
HyperGen 13 CPU.minutes 154 CPU.days 15 CPU.years
Custom DotHash 2 CPU.minutes 24 CPU.days 2.3 CPU.years
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The strong point of DotHash: practical implementation

▶ Comparing datasets is a matrix multiplication

  

 23 45 -23 . . .  -5
-81 68 111 . . .  -260
 9  -4  1  . . .  -10

1

√d

23  -81  9

45  68  -4

-23 111  1
  .  .   .
  .  .   .
  .  .   .
-5 -260 -10

x 1

√d
=

78710.2  3245.1   292.2 

3245.1  97550.3   -21.2

292.2    -21.2    6345.2 

Sketch of 3 datasets

Size of intersection 
of datasets 1 and 2

▶ Highly hardware-optimizable, e.g. SIMD, GPU
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Back to our original problem

▶ Comparing all-vs-all jaccard of 5M metagenomes: done in one
night!

  

Let’s move on to analyse how 
these datasets are organized!

David Koslicki
November 2025

▶ DotHash vectors can still be interesting!
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Manipulating vectors: analysis
▶ We can run a PCA directly on the sketches!

▶ Example: 7101 metagenomes either from Tara Ocean or
American Gut Project

▶ Also methods for clustering, machine learning, indexing,
compressing...
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Take-home messages

▶ DotHash hashes sets into vectors

▶ Very computationally e�cient

▶ Imprecise for low jaccard distances

▶ Many powerful methods/implementation exist to manipulate
vectors
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Space taken by the sketches

Method 35k genomes 5M genomes (extrapolated)

Mash 408M 52G
Dashing2 548M 245G
Custom DotHash 120M 15G
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