
strainMiner: Combining Integer Programming1

and Data Mining Techniques for Strain-level2

Metagenome Assembly3

Roland Faure1,2*†, Tam Khac Minh Truong1†, Victor Epain3,4

Riccardo Vicedomini1, Rumen Andonov1*5

1GenScale, Univ. Rennes, Inria RBA, CNRS UMR 6074, Rennes, France.6

2Service Evolution Biologique et Ecologie, Université libre de Bruxelles7

(ULB), Brussels, Belgium.8

3Unaliated, independent researcher, Lorient, France.9

*Corresponding author(s). E-mail(s): roland.faure@irisa.fr;10

rumen.andonov@irisa.fr;11

†These authors contributed equally to this work.12

Abstract13

Metagenomic assembly is crucial for understanding microbial communities, but14

standard tools often struggle to dierentiate bacterial strains of the same species,15

especially with low-accuracy reads from technologies like PacBio CLR and Oxford16

Nanopore. Current de novo assembly methods typically reconstruct bacterial17

genomes at the species level but fall short in distinguishing individual strain18

genomes. Our study presents a novel approach by reformulating the haplotyping19

problem as a matrix partitioning problem. We address this using Integer Linear20

Programming (ILP) combined with data mining techniques to improve computa-21

tional efficiency. We introduce strainMiner, a strain-separation module integrated22

into an established pipeline to produce strain-separated assemblies. On real and23

simulated datasets with error rates ranging from 2.5% to 12%, strainMiner com-24

pares favorably to state-of-the-art methods in terms of assembly quality and25

strain reconstruction while signicantly reducing computational requirements.26

Keywords: Metagenomics, Strain-level assembly, Haplotype phasing, Integer Linear27

Programming, Hierarchical Cluster Analysis28

1

1 Introduction29

Metagenomics is a fairly new research eld that consists of the analysis of sequencing30

data characterizing a mixture of microorganisms within an environment of interest [1].31

One of the steps for accomplishing this task is through the precise identication of32

the organisms that are present in such an environment. This problem often requires33

reconstructing the genomes of the sequenced species, a problem called metagenome34

assembly. Reconstructing and identifying bacterial genomes within a metagenome from35

sequencing data is an extremely challenging task due to the need of distinguishing and36

assembling DNA fragments of distinct microorganisms [2]. Furthermore, genomes may37

also exhibit widely distinct levels of abundance and relatedness, making it dicult38

to discern sequence variability from errors [3]. For example, conspecic strains (i.e.,39

strains of the same species) could share sequence identity above 99% and, in practice,40

are often assembled into species-level consensus sequences which hide strain variabil-41

ity [4]. Being able to precisely identify distinct strains is nevertheless important for42

studying a microbial environment at a functional level, due to the high phenotypic43

variability exhibited by conspecic strains [5]. A classical example is Escherichia coli44

which could be found as a probiotic [6] or pathogenic [7] strain.45

The challenge posed by the “strain separation” problem, as outlined in [4], arises46

from two primary factors: (i) the unknown number of strains and (ii) the variable47

abundance within a sample. Moreover, the precise characterization of what constitutes48

a “strain” is also not always clear. In this study, we will dene a strain as a bacterial49

haplotype, i.e. a contiguous sequence of nucleotides observed jointly and in sucient50

abundance by sequencing reads, in accordance with previous works [4]. Furthermore,51

we will use the terms strain and haplotype interchangeably.52

In the last decade the strain separation problem has been extensively studied, either53

without (de novo) or with the availability of a reference sequence. Previous works54

attempted to tackle the de novo problem exploiting data from dierent sequencing55

technologies such as short reads [8–11], long reads [4, 12–14], or a combination of the56

two [15].57

The increased accessibility of long-read sequencing (Oxford Nanopore and PacBio)58

for metagenomic data allows nowadays to accurately reconstruct complete genomes of59

bacterial species even from complex environments [16], especially using the low-error-60

rate PacBio HiFi technology [17–19]. At the same time, long reads are able to span61

far-apart strain-specic variants, oering the possibility to identify and reconstruct62

bacterial genomes even at the strain level.63

Several methods have been recently proposed for the de novo strain-level assembly64

with long-read metagenomic data, namely Strainberry [4], stRainy [12], Floria [13], and65

HairSplitter [14]. These approaches take as input a “reference” species-level assembly66

(e.g., built with a standard metagenome assembly tool) along with a set of long reads.67

A read alignment against the input assembly is then used to identify single-nucleotide68

polymorphisms (SNPs) which allow to partition reads likely belonging to the same69

haplotype. Strain-resolved and unphased sequences are nally represented within a70

graph in order to output more contiguous strain-resolved sequences.71

Strainberry [4] was the rst long-read-based tool proposed for the reconstruction72

of individual strains at the scale of a full metagenome. It exploits HapCUT2 [20] (a73

2

diploid phasing tool based on likelihood optimization through graph-cuts) which is74

applied iteratively until no more strains need to be separated. While Strainberry does75

not require long reads from a specic technology, it is mainly limited to low-complexity76

metagenomes, i.e. containing no more than ve conspecic strains.77

stRainy [12] constructs a “connection” graph that encodes overlapping reads, shar-78

ing and agreeing on SNPs. Then, it recursively clusters reads using a community79

detection algorithm [21] with increased sensitivity. As opposed to the other approaches,80

stRainy has been mainly evaluated on long reads with fairly low error rates (i.e.,81

PacBio HiFi, Nanopore R10, simulated reads with error rate up to 3%).82

Floria [13] is based on the Minimum Error Correction (MEC) model, typically83

applied to (genomic) polyploid haplotype phasing. However, it uses an heuristic84

method on overlapping windows to locally identify strain counts and read partitions.85

A directed acyclic graph is then constructed from such partitions in order to solve a86

ow problem whose solution is then used to extract vertex-disjoint paths representing87

haplotypes.88

HairSplitter [14] introduces a novel statistical approach to distinguish sequencing89

errors from SNPs, making it suitable for all long-read technologies. In order to cluster90

reads, HairSplitter runs over non-overlapping windows and implements a k-nearest-91

neighbour algorithm to correct reads at SNP loci. It nally clusters the reads using92

the Chinese Whispers algorithm [22] in order to identify (and assemble) haplotypes.93

The local clustering of reads in strain-specic partitions is at the core of methods94

for the strain separation problem. In this article, we introduce and study an original95

mathematical formulation for this specic task. More precisely, we model the prob-96

lem as a tiling problem on a binary matrix dened over a set of SNP positions. The97

rationale is to identify high (or low) density sub-matrices representing SNPs in which98

reads share the same nucleotides (within a given tolerance for errors). We formalize99

this problem as an Integer Linear Programming (ILP) problem and we integrate it100

within HairSplitter [14], which implements a complete strain-level metagenome assem-101

bly pipeline. We named the resulting method strainMiner. This article completes and102

extends a previously published conference paper [23].103

We evaluated strainMiner on mock communities (based on real and simulated data)104

in which it either improved or compared favorably with respect to competing tools to105

recover strain-specic sequences from long read sequencing data, while being either106

an order of magnitude faster or more memory-ecient.107

2 Methods108

2.1 Pipeline overview109

The strainMiner pipeline takes in input a reference sequence (a draft assembly or a110

reference genome) and a set of long reads. It then mirrors the four main stages of111

HairSplitter [14] (see Figure 1). These stages include: (i) aligning the reads to the112

draft assembly or reference genome, (ii) identifying putative SNPs and partitioning113

the reads, (iii) producing haplotype assemblies from the read partitions, and (iv)114

enhancing assembly contiguity through scaolding. Our contribution lies in an original115

method to tackle the second step of the pipeline, that is separating aligned reads by116

3

In an ideal, error-free pileup, conducting a chi-square test for independence with one138

degree of freedom between the two loci yields a p-value smaller than 10−215.139

The presence of errors can greatly decrease the statistical power of detecting cor-140

relations between loci. In our simulations, we incorporated random substitution errors141

with a probability of p = 0.1 for all bases across 10,000 simulations. Despite this,142

the p-value for the correlation between loci a and b remained low, with an average143

of 10−16 and a maximum of 10−6 in the worst-case scenario. However, it is crucial144

to note that thousands of non-polymorphic positions may potentially exhibit correla-145

tions with locus a in a single pileup. Furthermore, alignment artifacts can introduce146

more complex errors with locally higher error rates, which can further decrease the147

statistical power of detecting correlations.148

Including more loci unequivocally eliminates the risk of spurious correlations stem-149

ming from artifacts. In this same example, we introduced a third locus, denoted as c,150

while maintaining the 0.1 error rate. We applied the one-degree of freedom chi-square151

test to assess the relationship between the three positions. This time, the probabil-152

ity of encountering three non-polymorphic positions with correlations as strong as153

those observed between a, b, and c by chance was found to be below 10−200 in all154

10,000 simulations. While this example simplies the complexities of pileup errors, it155

emphasizes two fundamental aspects of the method: a) the joint observation of multi-156

ple loci signicantly enhances the statistical power to distinguish between errors and157

polymorphism, and b) even low-abundance strains can be reliably identied.158

2.3 Reference windows as binary matrices159

In each window, strainMiner considers only reads that span at least 60% of the win-160

dow’s length. Subsequently, strainMiner transforms the read alignment pileup into a161

binary matrix, where each row corresponds to a read, each column corresponds to a162

position, and cell (i, j) contains the number one if the base at position j of read i163

matches the dominant base at that position, the number zero if it matches the second164

most frequent base, and remains empty otherwise. Empty cells can occur if a read165

does not cover a position or if the base in a read at a given position is not among the166

two most common bases at that position.167

Next, columns are ltered to retain only those where the most common base con-168

stitutes at most a proportion p of the aligned reads. By default, strainMiner sets p169

to 0.95, striking a balance between computational eciency and precision. However,170

users aiming to recover low-abundance strains can set p to a higher value.171

To populate the empty cells, strainMiner implements the well-known K-nearest-172

neighbor imputation strategy [25], used for example in [26]. It identies for each read173

its “nearest neighbors” which, in this context, are the reads with the smallest Hamming174

distance. Then, for each empty cell in a row, strainMiner uses a majority vote from175

the ve closest neighbors that have non-empty cells at that position to decide whether176

the missing value is a 0 or a 1.177

The result is a binary matrix A = (aij) of size |R| × |L|, where the set of rows R178

corresponds to the reads, the set of columns L corresponds to the retained polymorphic179

loci/positions within the window, and aij ∈ {0, 1} for all 1 ≤ i ≤ |R|, 1 ≤ j ≤ |L|.180

5

strainMiner aims to identify groups of highly similar columns in this matrix, which181

statistically can only represent true SNPs if the group is suciently large. Reads will182

then be separated into groups based on their alleles at these positions.183

2.4 Definitions and problem formulation184

In this section, we translate the statistical signal observed above in a formal problem185

on the binary matrix.186

Quasi-bicluster of ones and zeros187

To begin, we rst introduce some preliminary denitions. The density dens(A) of a188

binary matrix A is dened as the total number of ones divided by the total number189

of elements or, more formally,190

dens(A) =



i∈R



j∈L aij

|R| × |L|
.

Furthermore, given a threshold γ ∈ (0.5, 1], a γ-bicluster of ones (or quasi-bicluster191

of ones) is any sub-matrix M of A such that dens(M) ≥ γ holds. When γ is chosen to192

be close to 1, the corresponding matrix is called dense, i.e. a matrix mostly containing193

ones and tolerating only a small proportion of zeros to account for various sequencing194

errors. Conversely, a (1− γ)-bicluster of zeros (or quasi-bicluster of zeros) is a sparse195

binary matrix, i.e. characterized by low density (close to 0).196

The quasi-bicluster dimensions are constrained by a minimum number of columns197

(width) and by a minimum number of rows (height), in order to ensure the signicance198

of the statistical signal captured by the quasi-bicluster.199

Tiling formulation200

We approach the strain separation problem as a specic tiling problem: given the201

binary matrix A constructed as described in the previous section, we aim to permute202

and partition its columns into vertical bands, also referred to as strips (see Figure 2a).203

A strip is a group of columns where the rows can be divided into two groups — one204

with the dominant allele forming a bicluster of ones and the other with alternative205

alleles forming a bicluster of zeroes. Each strip partitions the reads into a group with206

the dominant allele and a group with the alternative allele.207

By design, a strip groups multiple positions that are highly correlated. Larger208

strips include a greater number of correlated positions and likely witness the presence209

of actual SNPs in a multi-haplotype region. On the other hand, narrow strips (i.e.,210

characterized by a number of columns below the width threshold for biclustering)211

are excluded because they lack sucient statistical signicance to conrm that their212

columns represent actual SNPs.213

Read characteristic vectors214

Given a set of strips it is then possible to characterize each read with a binary vector215

whose size is equal to the number of strips. If the i-th strip of a read is a quasi-bicluster216

6

(a) (b)

Fig. 2 Separation of the domain into four vertical strips. (a) Each strip is a bipartition of
rows. Quasi-biclusters of ones (resp. of zeros) are shown in gray (resp. white). Columns in strip 5 (St5)
are not considered because the width of this strip is below the specied threshold. (b) Characteristic
vectors of the ve reads/rows highlighted with a dashed line in the left gure. The comparison of the
characteristic vectors results in three strains respectively labelled by a blue square, an orange triangle
and a purple circle: the rst strain contains r1 and r5, the second r2 and r4 and the third only r3.

of ones, the i-th coecient of this binary vector is set to 1; if not, it is set to 0. This217

vector is referred to as the characteristic vector of the corresponding read. Reads218

having identical characteristic vectors are grouped together as belonging to the same219

strain - in biological terms, this corresponds to grouping reads that are identical at all220

identied polymorphic loci. In practice, and as outlined in section 2.6.2, strains with221

a small number of reads are not considered, and their reads are possibly re-assigned222

to other strains.223

Figure 2b provides an example of the characteristic vectors for a subset of ve224

reads highlighted in Figure 2a. Among these reads, we observe three strains: r1 and225

r5 compose the rst one, r2 and r4 the second, and the third strain only contains r5.226

Problem objective227

Given three parameters corresponding to the desirable density γ (and sparsity (1−γ)),228

and two thresholds to indicate the minimum bicluster width and height, our strategy229

attempts to cover a maximum width of matrix A with strips.230

2.5 A hybrid approach for finding strips231

In order to nd strips in the matrix, we have developed an Integer Linear Programming232

approach (denoted here as ILP-QBC), which will be detailed in later. In practice,233

however, the ILP-QBC does not scale well for large matrices. To overcome this issue, we234

decided to combine ILP-QBC with a preprocessing step, Hierarchical Cluster Analysis235

(HCA), a well-known technique frequently used in data mining, to reduce the size of236

the problem. Figure 3 explains the pipeline.237

7

2.5.1 Strip identification with hierarchical clustering238

The search of strips consists of the following two steps:239

1. Hierarchical clustering of columns;240

2. Checking if groups of columns are strips;241

Hierarchical clustering of columns.242

We utilize a standard hierarchical clustering to group columns and identify candidate243

strips. Specically, we employ the Hamming distance and a complete-linkage strat-244

egy. Complete linkage denes the distance between two sub-matrices as the distance245

between their most distant columns (one from each sub-matrix). Groups of columns246

are iteratively merged until all groups have more than 35% divergence with all others.247

Groups of columns that do not satisfy the minimum required number of columns (5248

by default) are not further processed by strainMiner.249

Checking if groups of columns are strips250

For each group of columns identied in the previous step, we apply HCA to partition251

the reads (rows) into two groups. In the best-case scenario, the group of columns is252

“unambiguous” and form a strip: the groups form a (1 − γ)-bicluster of zeros and a253

γ-bicluster of ones. The identied strips are outputted and removed from the matrix,254

while the remaining “ambiguous” columns are provided as input to the ILP-QBC255

(Figure 3). The rationale behind this approach is that HCA very eciently identies256

“easy-to-spot” strips, reducing the size of the problem that needs to be solved by257

ILP-QBC.258

Unambiguous

ILP-QBC

Ambiguous

(a)

(b)

(c)

HCA HCA + ILP-QBC strips

Fig. 3 Hybrid strip search HCA + ILP-QBC. In each of the sub-gure, the colored areas are
dense binary sub-matrices. (a) The initial matrix with the groups of columns found via HCA. The
rst one (grey areas) is not a strip, as the bipartitioning does not respect γ. The other three (blue
tiles) are strips. (b) The remaining matrix is sent to ILP-QBC to nd strips respecting γ. In this
example, ILP-QBC nds two strips (orange tiles). (c) The nal set of strips is composed of the HCA-
based strips and the ones found by ILP-QBC.

8

(a) Initial binary
matrix

(b) Find the largest
bicluster of ones (c) Find the largest

bicluster of zeros under
the first bicluster

(d) Alternate the search
for bicluster of ones and
zeros until all the reads
are bipartitioned (e) The first strip is found, repeat

from (b) until no columns remain

Columns awaiting strip search

Quasi-bicluster of ones

Quasi-bicluster of zeros

Continue the strip
search on this
binary sub-matrix

First strip

Fig. 4 The ILP-QBC strip iterative search strategy [23].

2.5.2 Strip identification with Integer Linear Programming259

Our method, Integer Linear Programming for Quasi-Bicliques identication (ILP-260

QBC) iteratively identies strips until all columns of the input matrix have been261

processed (see Figure 4).262

We address the problem of identifying a strip heuristically and iteratively as follows:263

1. The largest quasi-bicluster of ones in the matrix is found (Figure 4b);264

2. Consider the sub-matrix restricted to the columns of the found quasi-bicluster265

but consisting of the reads that are not included in it (see the gray sub-matrix266

highlighted in Figure 4b);. Find the largest quasi-bicluster of zeros (Figure 4c);267

3. Restrict the matrix and repeat steps from 2 alternating the search of quasi-bicluster268

of ones and zeros until no reads remain to be partitioned (Figure 4d).269

4. Stop when no further quasi-bicluster can be found (given γ and the minimum height270

and width)271

For the strip under consideration, if the number of remaining reads is below a272

certain threshold (5 in our case), the strip is considered valid – the remaining reads273

corresponding to particularly noisy reads. Each remaining read is assigned to the274

quasi-bicluster of ones if it has a majority of ones; otherwise, it is assigned to the275

quasi-bicluster of zeros. The columns retained in the last iteration dene the width of276

the strip (Figure 4e). They are removed from the matrix and the search for another277

strip begins.278

If the number of remaining columns is above the threshold, it means that no279

wide enough strip could be found in the matrix, and the search for strips stops. The280

remaining columns often correspond to loci that are not polymorphic but particularly281

prone to sequencing errors (e.g. homopolymers).282

To nd quasi-bicluster of ones or of zeros, we employ an Integer Linear Program-283

ming (ILP) model.284

9

ILP model285

Given a binary matrix, the purpose of our ILP model is to select a group of rows and286

columns that maximizes the count of a specic value (either zeros or ones) respecting287

the γ parameter. For a given matrix A ∈ Z
|R|×|L|
2

and a threshold γ, we use binary288

variables xij , ui and vj to denote the selection (value equals 1) or non-selection (value289

equals 0) of a cell, row, and column, respectively. The following ILP searches for a290

quasi-bicluster of ones:291

max
∑

i∈R

∑

j∈L

aijxij (1)

xij ≤ ui, ∀i ∈ R, ∀j ∈ L (2)

xij ≤ vj , ∀i ∈ R, ∀j ∈ L (3)

xij ≥ ui + vj − 1, ∀i ∈ R, ∀j ∈ L (4)
∑

i∈R

∑

j∈L

(1− aij)xij ≤ (1− γ)×
∑

i∈R

∑

j∈L

xij (5)

ui, vj ∈ {0, 1}, xij ∈ {0, 1} ∀i ∈ R, ∀j ∈ L (6)

The function to maximize (1), counts for the number of ones in a sub-matrix292

determined by the binary variables having value 1. Constraints (2), (3), (4) mean that293

cell (i, j) is selected into the solution (i.e., xij = 1) if and only if both its corresponding294

row i and column j are also included into the solution (i.e., ui = 1 and vj = 1).295

The coecient aij represents the value of the cell at position i and j. It is directly296

used when searching for occurrences of 1s in the matrix. When the search is for 0s,297

however, the coecient is reversed to (1− aij) as follows:298

max
∑

i∈R

∑

j∈L

(1− aij)xij (7)

Constraint (5) ensures that the sub-matrix contains at least a proportion γ of ones.299

This constraint can also be reversed when necessary to ensure a minimum proportion300

of zeros:301

∑

i∈R

∑

j∈L

aijxij ≤ (1− γ)×
∑

i∈R

∑

j∈L

xij (8)

Complexity analysis302

Biclustering is closely related to bipartite graph partitioning. If we consider reads303

and positions as vertices of a graph and our binary matrix as the adjacency matrix304

of this graph, nding a submatrix of ones in the adjacency matrix is equivalent to305

nding a biclique in a bipartite graph. Finding the maximum biclique is an NP-hard306

problem [27]. Our problem is even more challenging, as we allow a proportion γ of307

non-existing links, eectively searching for a maximum quasi-biclique.308

10

2.6 From strips to strain groups309

2.6.1 Read characteristic vectors310

The nal strip set contains the strips generated both from HCA and ILP-QBC. Each311

strip corresponds to a biclustering of the rows: a row is either labelled one or zero.312

We associate a binary characteristic vector to each read, where the vector’s length313

corresponds to the number of strips (see Figure 2).314

2.6.2 Definition of strain groups315

Two reads participate in the same strain group if they have identical characteristic316

vectors - biologically, this means that these reads are identical at all polymorphic317

positions. In practice, however, some groups have fewer reads than a specied threshold318

(5 in our case). These orphan reads generally correspond to noisy reads that have319

been erroneously grouped in some strips. They are rescued by being reassigned them320

to bigger groups.321

Reassigning orphan reads322

To reassign reads, we consider the binary sub-matrix induced by the reads of each big323

group. The process can be summarized as follows:324

1. Compute the representative binary row-vector Vg of each big group g. The j-th325

column of the row-vector equals to:326

Vg[j] =

⌊



0≤i<m Ag[ij]

m

⌉

where Ag ∈ Z
m×|L|
2

is the binary matrix induced by group g with m reads, and ⌊x⌉327

rounds x to its nearest integer.328

2. Compute the Hamming distance between all the orphan reads and all the329

representatives Vg.330

3. For each orphan read and its Hamming-distance-closest-group g:331

• if the Hamming distance is less than a given threshold (here 0.1), assign the read332

to group g;333

• otherwise, do not assign the read to any group.334

2.7 Producing a strain-level assembly335

At this point, reads are partitioned into strain groups on all windows.336

Merging windows337

To simplify the assembly process, consecutive identical windows are combined. Specif-338

ically, two consecutive windows are deemed identical if they partition the reads into339

the same groups. In practical terms, two groups are considered identical if more than340

11

70% of the reads from the group in the rst window are also found in a correspond-341

ing group in the second window, and vice versa (considering only the reads present in342

both windows). These identical windows are then merged to create longer windows.343

Reconstructing the sequences344

In each window, a new contig is generated for each group of reads. These contigs are345

computed using Racon [28] to polish the corresponding (strain-oblivious) reference346

sequence towards the strain-specic sequence the group of reads represents. Conse-347

quently, each original contig from the draft assembly can be divided into multiple348

windows, and each window can contain several strain-specic contigs (one for each349

strain). Finally, the resulting contig graph is processed through GraphUnzip [29] to350

resolve repeats and generate a more contiguous nal set of contigs.351

3 Results352

3.1 Datasets353

We decided to evaluate strain-level assembly methods on mock communities based on354

real and simulated datasets of varying complexity in terms of error rate, number of355

strains, and level of abundance. This approach allows us to estimate the performance356

of the methods in a controlled scenario where the sequences of the ideal output are357

known a priori.358

The rst dataset we considered is a mixture of ve Vagococcus uvialis strains359

barcoded and sequenced in [30]. These genomes were sequenced with barcodes using a360

R9.4.1 Nanopore owcell. By ignoring the barcodes, we obtain a simple mock commu-361

nity containing ve dierent strains of roughly the same abundance. Specically, this362

dataset is characterized by three strains whose genomes are almost identical, likely363

turning the problem into the distinction of three V. uvialis strains, one of which is364

dominant.365

The second dataset is the Zymobiomics gut microbiome standard, a mock commu-366

nity sequenced independently with Nanopore 10.4.1 (error rate of 2.5%) and Nanopore367

R9.4.1 (error rate of 5%) owcells. These two samples are available in the European368

Nucleotide Archive (ENA) with accession numbers SRR17913199 and SRR17913200,369

respectively. This community consists of 21 genomes of bacteria, archea and yeast,370

with high variability in terms of abundance. Among the bacteria there are ve dierent371

strains of Escherichia coli characterized by equal abundance, making these samples an372

ideal dataset for comparing strain separation techniques with two dierent error rates.373

The third type of dataset is simulated and aims to evaluate strainMiner not374

only with respect to a higher number of strains but also in presence of a strain375

present at dierent levels of abundance. More precisely, we adopted a protocol sim-376

ilar to the one outlined in [4] and [14]. We thus simulated a mock community377

based on 10 strains of Escherichia coli to investigate the impact of strain cover-378

age on the ability to recover strain genomes. The E. coli strains are the same as379

those previously employed to evaluate HairSplitter [14] and their complete refer-380

ence sequences were retrieved from NCBI. More precisely, these include the strains381

12009 (GCA 000010745.1), IAI1 (GCA 000026265.1), F11 (GCA 018734065.1), S88382

12

(GCA 000026285.2), Sakai (GCA 003028755.1), SE15 (GCA 000010485.1), UMN026383

(GCA 000026325.2), HS (GCA 000017765.1), K12 (GCF 009832885.1), and Shigella384

exneri (GCF 000006925.2). Then, for each reference sequence, we simulated a 50X385

depth of coverage of Nanopore reads with 5% error rate. Reads were generated with386

Badreads [31] using the “nanopore2023” model. All the set of simulated reads were387

then merged into a single mixture. In order to evaluate the inuence of coverage on388

assembly completeness, we created four additional 10-strain mixures by downsam-389

pling exclusively the 12009 strain at 30X, 20X, 10X, and 5X. All simulated reads are390

available at https://zenodo.org/records/10362565.391

3.2 Assembly of the datasets392

All datasets were assembled using metaFlye (v2.9.2-b1786) with parameters --meta393

and --nano-raw. We chose metaFlye as it is the only long-read metagenome assembler394

thought to work with Oxford Nanopore reads. The obtained (species-level) assembly395

was used as input for all the strain-aware assemblers we evaluated. Moreover, an396

alignment of the reads against the input assembly was produced with Minimap2 [32]397

(parameter -x map-ont) for the software that required it.398

We ran the latest available versions of Strainberry (v1.1), Floria (v0.0.1), Hair-399

Splitter (v1.9.4), and strainMiner (v1.6.10) with default parameters. Since Strainberry400

and Floria have been designed to phase no more than 5 strains by default, when run-401

ning on the 10-strain E. coli datasets, we additionally provided the parameters -n 10402

and -p 10, respectively, to increase this limit.403

It is important to note that Floria does not perform any SNP calling nor does it404

output a base-level assembly, but rather provides a collection of haplotype-resolved405

read clusters. SNP calling was carried out using Longshot [33] (v1.0.0). Base-level406

assemblies of each read cluster were, instead, produced with wtdbg2 [34] (v2.5) follow-407

ing the assembly pipeline suggested in Floria’s documentation. The set of assembled408

haplotypes was nally complemented with the metaFlye contigs that were not phased409

(i.e., not part of Floria’s output).410

3.3 Evaluation Metrics411

Evaluating metagenome assemblies is a complex task, specically in a strain-aware412

context, due to the limited knowledge of the organisms within a metagenomic sample.413

Standard qualitative metrics should in fact be treated with caution as they might414

be the result of strain dierences rather than errors. For this reason, we assessed415

the performance of the strain-aware assembly methods on real and simulated mock416

communities for which we precisely know the sequences of the strains we aim to417

reconstruct.418

For each generated assembly, we computed the following metrics: assembly size,419

N50, reference fraction percentage, duplication ratio, number of misassemblies, number420

of mismatches, and number of indels. The assembly size and N50 (i.e., the length421

such that all contigs of that length or longer cover at least half of the assembly size)422

provide a quantitative view of the assembly. The other metrics, instead, provide a423

more qualitative assessment.424

13

Table 1 MetaQUAST metrics on the real and simulated datasets. For each assembly we
report the following metrics: assembly size (Total size), N50, reference fraction, duplication ratio (Dup.
ratio), number of misasseblies (# Mis.), number of mismatches per 100 kb, and number of indels per
100 kb. The best values among of the four strain-separated assemblies is in bold font.

Assembler
Total size

(Mb)
N50
(kb)

Reference
frac. (%)

Dup.
ratio

#
Mis.

Mismatches
/100 kb

Indels
/100 kb

V. fluvialis metaFlye 4.57 151 26.9 1.036 40 360.12 406.10
(14 Mb) Strainberry 5.71 104 33.1 1.112 45 78.19 513.38

Floria 8.03 142 47.7 1.117 20 102.61 636.40
HairSplitter 9.34 74 58.2 1.066 31 102.49 410.95
strainMiner 8.84 30 54.5 1.080 48 50.80 340.26

Zymo Q9 metaFlye 65.9 1797 63.0 1.001 136 96.97 58.52
(78 Mb) Strainberry 79.9 224 61.2 1.170 122 133.31 110.07

Floria 76.0 64 58.6 1.212 114 230.67 245.47
HairSplitter 94.6 33 76.7 1.179 114 115.38 76.49
strainMiner 76.7 220 73.4 1.044 95 69.90 55.46

Zymo Q20 metaFlye 60.4 388 60.2 1.007 142 115.86 76.49
(78 Mb) Strainberry 69.4 117 69.4 1.037 141 109.49 67.46

Floria 71.0 59 70.7 1.050 117 80.41 79.81
HairSplitter 69.2 68 70.9 1.013 113 69.17 66.36
strainMiner 69.5 51 70.8 1.022 109 67.98 65.14

E. coli metaFlye 14.0 70 25.2 1.029 94 477.68 310.42
10 strains Strainberry 19.6 63 34.2 1.082 175 367.48 138.68
(48 Mb) Floria 35.3 50 60.3 1.155 147 171.95 104.12

HairSplitter 54.8 44 93.6 1.182 311 87.12 52.30
strainMiner 50.1 56 91.1 1.127 335 81.73 72.80

These metrics were obtained with MetaQUAST [35] (v5.2.0) with the option425

--unique-mapping to ensure that each assembled sequence (a contig or part of it)426

is mapped exclusively to the best location among the reference sequences. This is427

crucial because MetaQUAST, which relies on sequence alignment, may suer from428

sub-optimal mappings on very similar references, such as strains of the same species.429

For this reason, we complemented MetaQUAST’s evaluation metrics by computing the430

k-mer completeness (k = 27) with KAT [36] (v2.4.2). This metric represents the per-431

centage of k-mers in the reference genomes that are also present within an assembly432

and provides a more accurate view on the strain-specic content that was successfully433

recovered.434

3.4 Assembly evaluation435

Table 1 summarizes the MetaQUAST metrics computed for each strain-level assem-436

bly tool on each of the evaluated datasets. To manage the size of the table, in the437

case of the 10-strain E. coli datasets, we display only the one in which all strains438

have the same abundance. The downsampling experiments, however, exhibited similar439

statistics.440

On the V. uvialis dataset, strainMiner is able to yield the lowest amount of441

mismatches and indels, while HairSplitter is able to achieve the best results in terms442

14

of assembly size, reference fraction, and duplication ratio. strainMiner however is on443

par with HairSplitter with respect to these metrics. Floria on the other hand is able to444

provide the most contiguous assembly (N50 equal to 142 kbp) and the lowest number445

of misassemblies at the expense of a more duplicated and less accurate assembly. While446

displaying an average performance on most the evaluation metrics, Strainberry was447

only able to recover the 33% of the reference sequences. The high reference fraction of448

both strainMiner and HairSplitter, compared to the other tools, is also conrmed by449

the highest k-mer completeness (Figure 5).450

On the Q9 and Q20+ versions of Zymobiomics datasets, results follow the same451

trend as for the V. uvialis dataset. Specically, strainMiner generates the most accu-452

rate assembly, as witnessed by the lowest number of misassemblies, mismatches, and453

indels. In terms of contiguity, Strainberry achieves the highest N50 but also at the454

expense of a high number of misassemblies. There are however some key dierences455

for the assemblies generated with the Q9 and Q20+ Nanopore reads. In the rst case,456

strain-level assemblers are characterized by a lower reference fraction and higher dupli-457

cation ratio. The only exception is strainMiner, which is able to provide comparable458

results, thus proving to be more tolerant to lower error rates. As for the V. uvialis,459

the k-mer completeness is consistent with the highest reference fraction of strainMiner460

and HairSplitter for both the Q9 and Q20+ datasets (Figure 5).461

The simulated 10-strain E. coli dataset oered a more challenging scenario due462

to the presence of a higher number of closely related genomes. Table 1 shows that463

strainMiner and HairSplitter are the only two tools able to achieve a high reference464

fraction (> 90%), thus recovering almost completely the 10 dierent strains. They are465

also the two tools with the lowest number of mismatches and indels (as for the other466

datasets). Strainberry and Floria, on the other hand, display a much lower reference467

coverage (34.2% and 60% respectively) and seem to struggle with high numbers of468

conspecic strains.469

Finally, the right-hand side of Figure 5 shows the k-mer completeness of the 10-470

strain dataset in which the E. coli 12009 strain is characterized by dierent level471

of abundance. As expected, strainMiner and HairSplitter exhibit a better ability to472

retrieve strains with low coverage, even when it is as low as 5X (representing only 1.1%473

of the total mix), and displayed a k-mer completeness always higher than 0.9. Never-474

theless, a positive correlation between the coverage and completeness is noticeable for475

all the evaluated methods.476

Overall, there is no tool that outperforms the others with respect to all evalua-477

tion metrics on the dierent datasets. All the evaluated tools oer dierent trade-os478

between contiguity and accuracy. Floria, for example, is able to achieve higher conti-479

guity and a comparable number of misassemblies at the expense of a lower base-level480

accuracy and reference coverage. On the other hand, when looking at qualitative met-481

rics, strainMiner generates more accurate assemblies (or comparable with the other482

competing tools) and a low amount of duplicated sequences, especially with higher483

error rates.484

485

15

4 Discussion500

In this work we introduced strainMiner, a method to assemble individual strain501

genomes from metagenomic sequencing data. Unlike other metagenome assembly502

methods, strainMiner is based on a novel formulation of the “strain separation” prob-503

lem as a tiling problem on a binary matrix. We proposed and implemented an Integer504

Linear Programming (ILP) model in order to eciently partition such a matrix and505

to cluster sequences (reads) that likely belong to the same haplotype. The ILP-based506

formulation allows us to exploit a well-established and highly optimized solver such as507

Gurobi. This, along with the use of heuristics inspired from data mining, allow strain-508

Miner to require considerably less time and memory compared to other competing509

software.510

In order to assess its capability to distinguish and reconstruct strains, strainMiner511

is implemented as a fork of HairSplitter (a previously developed tool for strain-level512

metagenome assembly), from which we replaced the read-clustering step with our513

approach. On both real and simulated datasets, strainMiner compared favorably to514

state-of-the-art methods in terms of strain recovery and base-level accuracy. We also515

showed that strainMiner’s output is less aected by reads with high error rates or516

metagenomes characterized by a high number of distinct strains. At the same time,517

strainMiner is able to recover strains with a depth of coverage as low as 5X.518

Nevertheless, the assemblies obtained with strainMiner had often much lower con-519

tiguity compared to the one obtained with HairSplitter. This could be due to the fact520

that strainMiner is based on the version 1.6.10 of HairSplitter, while in our compari-521

son we used the latest available version (1.9.4). Upgrading strainMiner to this version522

might further improve output’s contiguity. Moreover, it is also possible that the prop-523

erties of the read clusters computed by strainMiner could be quite dierent compared524

to those obtained with HairSplitter. A tailored scaolding step could thus improve525

contiguity and would merit further investigation. A possible approach would be to con-526

sider overlapping xed-length windows. As a matter of fact, the use of non-overlapping527

windows generates clean input matrices for the ILP solver but completely relies on528

the GraphUnzip module of HairSplitter to improve assembly contiguity. Considering529

overlapping windows, however, could better take advantage of the co-occurrence of530

strain-specic nucleotides, allowing to identify longer haplotypes beforehand.531

Finally, one additional limitation is the use of the Gurobi solver: an academic532

license is free but limited to three instances of Gurobi running at the same time.533

Attempts to use the free CBC solver showed a decrease in performance.534

Software availability535

strainMiner is open source and available online with the GPL3 licence. The strain-536

Miner used to generate the results is available at https://github.com/rolandfaure/537

strainminer. A more recent version, under development, is available at https://gitlab.538

com/haplotype-tiling/strainminer-py.539

17

Acknowledgements540

We wish to thank Dominique Lavenier, who formulated the rst version of the541

optimization problem.542

We acknowledge the GenOuest bioinformatics core facility https://www.genouest.543

org for providing the computing infrastructure.544

References545

[1] Ghurye, J. S., Cepeda-Espinoza, V. & Pop, M. Metagenomic assembly: Overview,546

challenges and applications. The Yale journal of biology and medicine 89, 353–362547

(2016).548

[2] Almeida, A. et al. A unied catalog of 204,938 reference genomes from the human549

gut microbiome. Nature biotechnology 39, 105–114 (2021).550

[3] Olson, N. D. et al. Metagenomic assembly through the lens of validation: recent551

advances in assessing and improving the quality of genomes assembled from552

metagenomes. Briengs in bioinformatics 20, 1140–1150 (2019).553

[4] Vicedomini, R., Quince, C., Darling, A. E. & Chikhi, R. Strainberry: auto-554

mated strain separation in low-complexity metagenomes using long reads. Nature555

Communications 12, 4485 (2021). URL https://www.nature.com/articles/556

s41467-021-24515-9.557

[5] Albanese, D. & Donati, C. Strain proling and epidemiology of bacterial species558

from metagenomic sequencing. Nature communications 8, 2260 (2017).559

[6] Sonnenborn, U. Escherichia coli strain nissle 1917—from bench to bedside and560

back: history of a special escherichia coli strain with probiotic properties. FEMS561

microbiology letters 363, fnw212 (2016).562

[7] Frank, C. et al. Epidemic prole of shiga-toxin–producing escherichia coli o104:h4563

outbreak in germany. New England Journal of Medicine 365, 1771–1780 (2011).564

URL https://doi.org/10.1056/NEJMoa1106483. PMID: 21696328.565

[8] Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from566

metagenomes. Genome Biology 18, 181 (2017). URL http://genomebiology.567

biomedcentral.com/articles/10.1186/s13059-017-1309-9.568

[9] Quince, C. et al. Metagenomics Strain Resolution on Assembly Graphs. preprint,569

Bioinformatics (2020). URL http://biorxiv.org/lookup/doi/10.1101/2020.09.06.570

284828.571

[10] Baaijens, J., Aabidine, A., Rivals, E. & Schönhuth, A. De novo assembly of viral572

quasispecies using overlap graphs. Genome Research (2017).573

18

[11] Kang, X., Luo, X. & Schönhuth, A. StrainXpress: strain aware metagenome574

assembly from short reads. Nucleic Acids Research 50, e101–e101 (2022). URL575

https://academic.oup.com/nar/article/50/17/e101/6625806.576

[12] Kazantseva, E., Donmez, A., Pop, M. & Kolmogorov, M. stRainy: assembly-based577

metagenomic strain phasing using long reads. preprint, Bioinformatics (2023).578

URL http://biorxiv.org/lookup/doi/10.1101/2023.01.31.526521.579

[13] Shaw, J., Gounot, J.-S., Chen, H., Nagarajan, N. & Yu, Y. W. Floria: Fast and580

accurate strain haplotyping in metagenomes. Bioinformatics 40, i30–i38 (2024).581

[14] Faure, R., Lavenier, D. & Flot, J.-F. Hairsplitter: haplotype assembly from long,582

noisy reads. bioRxiv (2024). URL https://www.biorxiv.org/content/early/2024/583

06/14/2024.02.13.580067.584

[15] Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution anal-585

ysis of resistance determinants and mobile elements in human microbiomes.586

Nature Biotechnology 37, 937–944 (2019). URL http://www.nature.com/articles/587

s41587-019-0191-2.588

[16] Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using589

repeat graphs. Nature Methods 17, 1103–1110 (2020). URL https://www.nature.590

com/articles/s41592-020-00971-x.591

[17] Bickhart, D. M. et al. Generating lineage-resolved, complete metagenome-592

assembled genomes from complex microbial communities. Nature biotechnology593

40, 711–719 (2022).594

[18] Feng, X., Cheng, H., Portik, D. & Li, H. Metagenome assembly of high-delity595

long reads with hiasm-meta. Nature Methods 19, 1–4 (2022).596

[19] Benoit, G. et al. High-quality metagenome assembly from long accurate reads597

with metamdbg. Nature Biotechnology 1–6 (2024).598

[20] Bansal, V. Hapcut2: A method for phasing genomes using experimental sequence599

data. Methods in molecular biology 2590, 139–147 (2022).600

[21] Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect601

community structures in large-scale networks. Physical Review E—Statistical,602

Nonlinear, and Soft Matter Physics 76, 036106 (2007).603

[22] Biemann, C. Chinese whispers: An ecient graph clustering algorithm and its604

application to natural language processing problems. Proceedings of TextGraphs605

73–80 (2006).606

19

[23] Truong, T. K. M., Faure, R. & Andonov, R. Assembling close strains in607

metagenome assemblies using discrete optimization, 15th International Confer-608

ence on Bioinformatics Models, Methods and Algorithms, BIOINFORMATICS,609

February 21-23, 2024, Rome, Italy. URL https://bioinformatics.scitevents.org.610

[24] Feng, Z., Clemente, J., Wong, B. & Schadt, E. Detecting and phasing minor single-611

nucleotide variants from long-read sequencing data. Nature Communications 12,612

3032 (2021).613

[25] Fix, E. & Hodges, J. L. Discriminatory analysis. nonparametric discrimination:614

Consistency properties. International Statistical Review / Revue Internationale615

de Statistique 57, 238–247 (1989). URL http://www.jstor.org/stable/1403797.616

[26] Troyanskaya, O. et al. Missing value estimation methods for dna microar-617

rays. Bioinformatics 17, 520–525 (2001). URL https://doi.org/10.1093/618

bioinformatics/17.6.520.619

[27] Peeters, R. The maximum edge biclique problem is NP-complete. Discrete Applied620

Mathematics 131, 651–654 (2003).621

[28] Fang, L. & Wang, K. Polishing high-quality genome assemblies. Nature Methods622

19, 649–650 (2022). URL https://www.nature.com/articles/s41592-022-01515-1.623

[29] Faure, R., Guiglielmoni, N. & Flot, J.-F. Graphunzip: unzipping assembly graphs624

with long reads and hi-c. bioRxiv 2021–01 (2021).625

[30] Rodriguez Jimenez, A. et al. Comparative genome analysis of vagococcus uvialis626

reveals abundance of mobile genetic elements in sponge-isolated strains. BMC627

Genomics 23 (2022).628

[31] Wick, R. Badread: simulation of error-prone long reads. Journal of Open Source629

Software 4, 1316 (2019). URL http://joss.theoj.org/papers/10.21105/joss.01316.630

[32] Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics631

34, 3094–3100 (2018). URL https://academic.oup.com/bioinformatics/article/632

34/18/3094/4994778.633

[33] Edge, P. & Bansal, V. Longshot enables accurate variant calling in diploid634

genomes from single-molecule long read sequencing. Nature communications 10,635

4660 (2019).636

[34] Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nature637

methods 17, 155–158 (2020).638

[35] Mikheenko, A., Saveliev, V. & Gurevich, A. Metaquast: Evaluation of639

metagenome assemblies. Bioinformatics 32, btv697 (2015).640

20

[36] Mapleson, D., Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. Kat:641

A k-mer analysis toolkit to quality control ngs datasets and genome assemblies.642

Bioinformatics (Oxford, England) 33 (2016).643

21

