11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

strainMiner: Combining Integer Programming
and Data Mining Techniques for Strain-level
Metagenome Assembly

Roland Faure’?f, Tam Khac Minh Truong'f, Victor Epain?,

. . . . k
Riccardo Vicedomini!, Rumen Andonov!

LGenScale, Univ. Rennes, Inria RBA, CNRS UMR 6074, Rennes, France.

2Service Evolution Biologique et Ecologie, Université libre de Bruxelles
(ULB), Brussels, Belgium.
3Unaffiliated, independent researcher, Lorient, France.

*Corresponding author(s). E-mail(s): roland.faure@irisa.fr;
rumen.andonov@irisa.fr;
TThese authors contributed equally to this work.

Abstract

Metagenomic assembly is crucial for understanding microbial communities, but
standard tools often struggle to differentiate bacterial strains of the same species,
especially with low-accuracy reads from technologies like PacBio CLR and Oxford
Nanopore. Current de novo assembly methods typically reconstruct bacterial
genomes at the species level but fall short in distinguishing individual strain
genomes. Our study presents a novel approach by reformulating the haplotyping
problem as a matrix partitioning problem. We address this using Integer Linear
Programming (ILP) combined with data mining techniques to improve computa-
tional efficiency. We introduce strainMiner, a strain-separation module integrated
into an established pipeline to produce strain-separated assemblies. On real and
simulated datasets with error rates ranging from 2.5% to 12%, strainMiner com-
pares favorably to state-of-the-art methods in terms of assembly quality and
strain reconstruction while significantly reducing computational requirements.

Keywords: Metagenomics, Strain-level assembly, Haplotype phasing, Integer Linear
Programming, Hierarchical Cluster Analysis

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

1 Introduction

Metagenomics is a fairly new research field that consists of the analysis of sequencing
data characterizing a mixture of microorganisms within an environment of interest [1].
One of the steps for accomplishing this task is through the precise identification of
the organisms that are present in such an environment. This problem often requires
reconstructing the genomes of the sequenced species, a problem called metagenome
assembly. Reconstructing and identifying bacterial genomes within a metagenome from
sequencing data is an extremely challenging task due to the need of distinguishing and
assembling DNA fragments of distinct microorganisms [2]. Furthermore, genomes may
also exhibit widely distinct levels of abundance and relatedness, making it difficult
to discern sequence variability from errors [3]. For example, conspecific strains (i.e.,
strains of the same species) could share sequence identity above 99% and, in practice,
are often assembled into species-level consensus sequences which hide strain variabil-
ity [4]. Being able to precisely identify distinct strains is nevertheless important for
studying a microbial environment at a functional level, due to the high phenotypic
variability exhibited by conspecific strains [5]. A classical example is Escherichia coli
which could be found as a probiotic [6] or pathogenic [7] strain.

The challenge posed by the “strain separation” problem, as outlined in [4], arises
from two primary factors: (i) the unknown number of strains and (ii) the variable
abundance within a sample. Moreover, the precise characterization of what constitutes
a “strain” is also not always clear. In this study, we will define a strain as a bacterial
haplotype, i.e. a contiguous sequence of nucleotides observed jointly and in sufficient
abundance by sequencing reads, in accordance with previous works [4]. Furthermore,
we will use the terms strain and haplotype interchangeably.

In the last decade the strain separation problem has been extensively studied, either
without (de novo) or with the availability of a reference sequence. Previous works
attempted to tackle the de novo problem exploiting data from different sequencing
technologies such as short reads [8-11], long reads [4, 12-14], or a combination of the
two [15].

The increased accessibility of long-read sequencing (Oxford Nanopore and PacBio)
for metagenomic data allows nowadays to accurately reconstruct complete genomes of
bacterial species even from complex environments [16], especially using the low-error-
rate PacBio HiFi technology [17-19]. At the same time, long reads are able to span
far-apart strain-specific variants, offering the possibility to identify and reconstruct
bacterial genomes even at the strain level.

Several methods have been recently proposed for the de novo strain-level assembly
with long-read metagenomic data, namely Strainberry [4], stRainy [12], Floria [13], and
HairSplitter [14]. These approaches take as input a “reference” species-level assembly
(e.g., built with a standard metagenome assembly tool) along with a set of long reads.
A read alignment against the input assembly is then used to identify single-nucleotide
polymorphisms (SNPs) which allow to partition reads likely belonging to the same
haplotype. Strain-resolved and unphased sequences are finally represented within a
graph in order to output more contiguous strain-resolved sequences.

Strainberry [4] was the first long-read-based tool proposed for the reconstruction
of individual strains at the scale of a full metagenome. It exploits HapCUT2 [20] (a

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

diploid phasing tool based on likelihood optimization through graph-cuts) which is
applied iteratively until no more strains need to be separated. While Strainberry does
not require long reads from a specific technology, it is mainly limited to low-complexity
metagenomes, i.e. containing no more than five conspecific strains.

stRainy [12] constructs a “connection” graph that encodes overlapping reads, shar-
ing and agreeing on SNPs. Then, it recursively clusters reads using a community
detection algorithm [21] with increased sensitivity. As opposed to the other approaches,
stRainy has been mainly evaluated on long reads with fairly low error rates (i.e.,
PacBio HiFi, Nanopore R10, simulated reads with error rate up to 3%).

Floria [13] is based on the Minimum Error Correction (MEC) model, typically
applied to (genomic) polyploid haplotype phasing. However, it uses an heuristic
method on overlapping windows to locally identify strain counts and read partitions.
A directed acyclic graph is then constructed from such partitions in order to solve a
flow problem whose solution is then used to extract vertex-disjoint paths representing
haplotypes.

HairSplitter [14] introduces a novel statistical approach to distinguish sequencing
errors from SNPs, making it suitable for all long-read technologies. In order to cluster
reads, HairSplitter runs over non-overlapping windows and implements a k-nearest-
neighbour algorithm to correct reads at SNP loci. It finally clusters the reads using
the Chinese Whispers algorithm [22] in order to identify (and assemble) haplotypes.

The local clustering of reads in strain-specific partitions is at the core of methods
for the strain separation problem. In this article, we introduce and study an original
mathematical formulation for this specific task. More precisely, we model the prob-
lem as a tiling problem on a binary matrix defined over a set of SNP positions. The
rationale is to identify high (or low) density sub-matrices representing SNPs in which
reads share the same nucleotides (within a given tolerance for errors). We formalize
this problem as an Integer Linear Programming (ILP) problem and we integrate it
within HairSplitter [14], which implements a complete strain-level metagenome assem-
bly pipeline. We named the resulting method strainMiner. This article completes and
extends a previously published conference paper [23].

We evaluated strainMiner on mock communities (based on real and simulated data)
in which it either improved or compared favorably with respect to competing tools to
recover strain-specific sequences from long read sequencing data, while being either
an order of magnitude faster or more memory-efficient.

2 Methods

2.1 Pipeline overview

The strainMiner pipeline takes in input a reference sequence (a draft assembly or a
reference genome) and a set of long reads. It then mirrors the four main stages of
HairSplitter [14] (see Figure 1). These stages include: (i) aligning the reads to the
draft assembly or reference genome, (ii) identifying putative SNPs and partitioning
the reads, (iii) producing haplotype assemblies from the read partitions, and (iv)
enhancing assembly contiguity through scaffolding. Our contribution lies in an original
method to tackle the second step of the pipeline, that is separating aligned reads by

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

(i) Alignment —_—— Reads

Assembly
t t t t t t t t t t + windows

(i) Separation

>Read groups

(iii) Re-assembly e —— — RE3SSEMbled

e contigs

New
S e——— assembly

(iv) Scaffolding

Fig. 1 The strainMiner pipeline [23]: (i) Reads are aligned on the reference or draft assembly, (ii)
on each window of the assembly, reads are separated by haplotype of origin - only three windows are
shown here, (iii) all groups of reads are locally reassembled and (iv) the locally reassembled contigs
are scaffolded to produce longer contigs.

haplotype of origin. The other steps of the pipeline are the same ones implemented in
HairSplitter [14] (version 1.6.10).

The problem we are tackling can be defined as follows: given a set of reads aligned
to a reference sequence, the goal is to separate the reads into groups based on their hap-
lotype of origin. Ideally, all reads originating from the same strain would be grouped
together. However, this level of separation across the entire genome is not always
achievable. It is impossible to phase two consecutive variants if they are too far apart
to be covered by at least one read. Therefore, our objective is to partition reads locally.
Specifically, we consider the input reference in non-overlapping windows of length w,
where w should be smaller than the average read length (we set w to 5000 by default).

2.2 Statistical signal

The intuition behind strainMiner is similar to the one behind HairSplitter [14], origi-
nally introduced in [24]. The idea is to consider multiple loci simultaneously in order
to group reads by their haplotypes of origin. Considering only one locus is not suffi-
cient, as alignment artifacts and error rates can introduce errors at a single locus that
cannot be distinguished from alternative alleles, especially when the alternative alle-
les are rare. On the contrary, by exploiting the correlation between several columns,
it is possible to differentiate errors from true polymorphisms.

For instance, consider a hypothetical scenario involving a mixture of two strains,
where strain A constitutes 99% of the mix and strain B a mere 1%. Consider also a
collection of a thousand reads spanning two polymorphic sites, denoted as a and b.

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

In an ideal, error-free pileup, conducting a chi-square test for independence with one
degree of freedom between the two loci yields a p-value smaller than 107215,

The presence of errors can greatly decrease the statistical power of detecting cor-
relations between loci. In our simulations, we incorporated random substitution errors
with a probability of p = 0.1 for all bases across 10,000 simulations. Despite this,
the p-value for the correlation between loci a and b remained low, with an average
of 10716 and a maximum of 107% in the worst-case scenario. However, it is crucial
to note that thousands of non-polymorphic positions may potentially exhibit correla-
tions with locus a in a single pileup. Furthermore, alignment artifacts can introduce
more complex errors with locally higher error rates, which can further decrease the
statistical power of detecting correlations.

Including more loci unequivocally eliminates the risk of spurious correlations stem-
ming from artifacts. In this same example, we introduced a third locus, denoted as c,
while maintaining the 0.1 error rate. We applied the one-degree of freedom chi-square
test to assess the relationship between the three positions. This time, the probabil-
ity of encountering three non-polymorphic positions with correlations as strong as
those observed between a, b, and ¢ by chance was found to be below 1072 in all
10,000 simulations. While this example simplifies the complexities of pileup errors, it
emphasizes two fundamental aspects of the method: a) the joint observation of multi-
ple loci significantly enhances the statistical power to distinguish between errors and
polymorphism, and b) even low-abundance strains can be reliably identified.

2.3 Reference windows as binary matrices

In each window, strainMiner considers only reads that span at least 60% of the win-
dow’s length. Subsequently, strainMiner transforms the read alignment pileup into a
binary matrix, where each row corresponds to a read, each column corresponds to a
position, and cell (7,;) contains the number one if the base at position j of read 4
matches the dominant base at that position, the number zero if it matches the second
most frequent base, and remains empty otherwise. Empty cells can occur if a read
does not cover a position or if the base in a read at a given position is not among the
two most common bases at that position.

Next, columns are filtered to retain only those where the most common base con-
stitutes at most a proportion p of the aligned reads. By default, strainMiner sets p
to 0.95, striking a balance between computational efficiency and precision. However,
users aiming to recover low-abundance strains can set p to a higher value.

To populate the empty cells, strainMiner implements the well-known K-nearest-
neighbor imputation strategy [25], used for example in [26]. It identifies for each read
its “nearest neighbors” which, in this context, are the reads with the smallest Hamming
distance. Then, for each empty cell in a row, strainMiner uses a majority vote from
the five closest neighbors that have non-empty cells at that position to decide whether
the missing value is a 0 or a 1.

The result is a binary matrix A = (a;;) of size |R| x |L|, where the set of rows R
corresponds to the reads, the set of columns L corresponds to the retained polymorphic
loci/positions within the window, and a;; € {0,1} for all 1 <i <|R|,1 < j <|[L|.

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

strainMiner aims to identify groups of highly similar columns in this matrix, which
statistically can only represent true SNPs if the group is sufficiently large. Reads will
then be separated into groups based on their alleles at these positions.

2.4 Definitions and problem formulation

In this section, we translate the statistical signal observed above in a formal problem
on the binary matrix.

Quasi-bicluster of ones and zeros

To begin, we first introduce some preliminary definitions. The density dens(A) of a
binary matrix A is defined as the total number of ones divided by the total number
of elements or, more formally,

dens(A) = —ZieR ZjeL % .

|R| < |L|
Furthermore, given a threshold v € (0.5,1], a ~y-bicluster of ones (or quasi-bicluster
of ones) is any sub-matrix M of A such that dens(M) > ~ holds. When ~ is chosen to
be close to 1, the corresponding matrix is called dense, i.e. a matrix mostly containing
ones and tolerating only a small proportion of zeros to account for various sequencing
errors. Conversely, a (1 — v)-bicluster of zeros (or quasi-bicluster of zeros) is a sparse
binary matrix, i.e. characterized by low density (close to 0).

The quasi-bicluster dimensions are constrained by a minimum number of columns
(width) and by a minimum number of rows (height), in order to ensure the significance
of the statistical signal captured by the quasi-bicluster.

Tiling formulation

We approach the strain separation problem as a specific tiling problem: given the
binary matrix A constructed as described in the previous section, we aim to permute
and partition its columns into vertical bands, also referred to as strips (see Figure 2a).
A strip is a group of columns where the rows can be divided into two groups — one
with the dominant allele forming a bicluster of ones and the other with alternative
alleles forming a bicluster of zeroes. Each strip partitions the reads into a group with
the dominant allele and a group with the alternative allele.

By design, a strip groups multiple positions that are highly correlated. Larger
strips include a greater number of correlated positions and likely witness the presence
of actual SNPs in a multi-haplotype region. On the other hand, narrow strips (i.e.,
characterized by a number of columns below the width threshold for biclustering)
are excluded because they lack sufficient statistical significance to confirm that their
columns represent actual SNPs.

Read characteristic vectors

Given a set of strips it is then possible to characterize each read with a binary vector
whose size is equal to the number of strips. If the i-th strip of a read is a quasi-bicluster

217

218

219

220

221

222

223

225

226

227

228

229

230

231

232

233

234

235

236

237

Sty Sty St Sty St

1
T2 Sty Sty Stz Sty
r 1 0 o0 1
T3
ro 1 1 1 0
rg 0 1 0 1
T4 rg 1 1 1 0
r5 Ts 1 0 0 1
(@ (b)

Fig. 2 Separation of the domain into four vertical strips. (a) Each strip is a bipartition of
rows. Quasi-biclusters of ones (resp. of zeros) are shown in gray (resp. white). Columns in strip 5 (Sts)
are not considered because the width of this strip is below the specified threshold. (b) Characteristic
vectors of the five reads/rows highlighted with a dashed line in the left figure. The comparison of the
characteristic vectors results in three strains respectively labelled by a blue square, an orange triangle
and a purple circle: the first strain contains 71 and 75, the second r2 and r4 and the third only r3.

of ones, the i-th coefficient of this binary vector is set to 1; if not, it is set to 0. This
vector is referred to as the characteristic vector of the corresponding read. Reads
having identical characteristic vectors are grouped together as belonging to the same
strain - in biological terms, this corresponds to grouping reads that are identical at all
identified polymorphic loci. In practice, and as outlined in section 2.6.2, strains with
a small number of reads are not considered, and their reads are possibly re-assigned
to other strains.

Figure 2b provides an example of the characteristic vectors for a subset of five
reads highlighted in Figure 2a. Among these reads, we observe three strains: r; and
r5 compose the first one, ro and r4 the second, and the third strain only contains rs.

Problem objective

Given three parameters corresponding to the desirable density vy (and sparsity (1—+)),
and two thresholds to indicate the minimum bicluster width and height, our strategy
attempts to cover a maximum width of matrix A with strips.

2.5 A hybrid approach for finding strips

In order to find strips in the matrix, we have developed an Integer Linear Programming
approach (denoted here as ILP-QBC), which will be detailed in later. In practice,
however, the ILP-QBC does not scale well for large matrices. To overcome this issue, we
decided to combine ILP-QBC with a preprocessing step, Hierarchical Cluster Analysis
(HCA), a well-known technique frequently used in data mining, to reduce the size of
the problem. Figure 3 explains the pipeline.

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

2.5.1 Strip identification with hierarchical clustering
The search of strips consists of the following two steps:

1. Hierarchical clustering of columns;
2. Checking if groups of columns are strips;

Hierarchical clustering of columns.

We utilize a standard hierarchical clustering to group columns and identify candidate
strips. Specifically, we employ the Hamming distance and a complete-linkage strat-
egy. Complete linkage defines the distance between two sub-matrices as the distance
between their most distant columns (one from each sub-matrix). Groups of columns
are iteratively merged until all groups have more than 35% divergence with all others.
Groups of columns that do not satisfy the minimum required number of columns (5
by default) are not further processed by strainMiner.

Checking if groups of columns are strips

For each group of columns identified in the previous step, we apply HCA to partition
the reads (rows) into two groups. In the best-case scenario, the group of columns is
“unambiguous” and form a strip: the groups form a (1 — 7)-bicluster of zeros and a
~-bicluster of ones. The identified strips are outputted and removed from the matrix,
while the remaining “ambiguous” columns are provided as input to the ILP-QBC
(Figure 3). The rationale behind this approach is that HCA very efficiently identifies
“easy-to-spot” strips, reducing the size of the problem that needs to be solved by
ILP-QBC.

Unambiguous >

>
Ambiguous

HCA HCA + ILP-QBC strips

(@ ILP-QBC (c)

(b)

Fig. 3 Hybrid strip search HCA + ILP-QBC. In each of the sub-figure, the colored areas are
dense binary sub-matrices. (a) The initial matrix with the groups of columns found via HCA. The
first one (grey areas) is not a strip, as the bipartitioning does not respect 7. The other three (blue
tiles) are strips. (b) The remaining matrix is sent to ILP-QBC to find strips respecting ~. In this
example, ILP-QBC finds two strips (orange tiles). (c¢) The final set of strips is composed of the HCA-
based strips and the ones found by ILP-QBC.

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

Continue the strip
search on this

' binary sub-matrix

E —

(a) Initial binary .

matrix L {
(b) Find the largest | D L
bicluster of ones (c) Find the largest E
bicluster of zeros under (d) Alternate the search
D Columns awaiting strip search the first bicluster for bicluster of onesand ., strip
zeros until all the reads

are bipartitioned (e) The first strip is found, repeat

uasi-bicluster of ones .)
Q from (b) until no columns remain

D Quasi-bicluster of zeros

Fig. 4 The ILP-QBC strip iterative search strategy [23].

2.5.2 Strip identification with Integer Linear Programming

Our method, Integer Linear Programming for Quasi-Bicliques identification (ILP-
QBQ) iteratively identifies strips until all columns of the input matrix have been
processed (see Figure 4).

We address the problem of identifying a strip heuristically and iteratively as follows:

1. The largest quasi-bicluster of ones in the matrix is found (Figure 4b);

2. Consider the sub-matrix restricted to the columns of the found quasi-bicluster
but consisting of the reads that are not included in it (see the gray sub-matrix
highlighted in Figure 4b);. Find the largest quasi-bicluster of zeros (Figure 4c);

3. Restrict the matrix and repeat steps from 2 alternating the search of quasi-bicluster
of ones and zeros until no reads remain to be partitioned (Figure 4d).

4. Stop when no further quasi-bicluster can be found (given v and the minimum height
and width)

For the strip under consideration, if the number of remaining reads is below a
certain threshold (5 in our case), the strip is considered valid — the remaining reads
corresponding to particularly noisy reads. Each remaining read is assigned to the
quasi-bicluster of ones if it has a majority of ones; otherwise, it is assigned to the
quasi-bicluster of zeros. The columns retained in the last iteration define the width of
the strip (Figure 4e). They are removed from the matrix and the search for another
strip begins.

If the number of remaining columns is above the threshold, it means that no
wide enough strip could be found in the matrix, and the search for strips stops. The
remaining columns often correspond to loci that are not polymorphic but particularly
prone to sequencing errors (e.g. homopolymers).

To find quasi-bicluster of ones or of zeros, we employ an Integer Linear Program-
ming (ILP) model.

285

286

287

288

289

290

291

292

293

294

295

296

297

2908

299

300

302

303

304

305

306

307

308

ILP model

Given a binary matrix, the purpose of our ILP model is to select a group of rows and
columns that maximizes the count of a specific value (either zeros or ones) respecting
the ~ parameter. For a given matrix A € Z'QRMLl and a threshold v, we use binary
variables x;;, u; and v; to denote the selection (value equals 1) or non-selection (value
equals 0) of a cell, row, and column, respectively. The following ILP searches for a

quasi-bicluster of ones:

max ZZaijmij (1)

i€R jeL

Tij <w,, Vi€ R,Vj el (2)
Tij S’Uj, V’LER,V]EL (3)
Tij > up +vj — 1, Vie R,Vje L (4)
D> M —ag)wi; <A =) x D> @ (5)
i€ER jEL i€ERjEL

u;,v; € {0,1}, z;; € {0,1} Vie R, VjelL (6)

The function to maximize (1), counts for the number of ones in a sub-matrix
determined by the binary variables having value 1. Constraints (2), (3), (4) mean that
cell (¢, j) is selected into the solution (i.e., z;; = 1) if and only if both its corresponding
row ¢ and column j are also included into the solution (i.e., u; =1 and v; = 1).

The coefficient a;; represents the value of the cell at position ¢ and j. It is directly
used when searching for occurrences of 1s in the matrix. When the search is for Os,
however, the coefficient is reversed to (1 — a;;) as follows:

max Z Z(l — aij)xij (7)

i€eRjeL

Constraint (5) ensures that the sub-matrix contains at least a proportion v of ones.
This constraint can also be reversed when necessary to ensure a minimum proportion
of zeros:

S agrip < Q=9 x> wi (8)

i€R jEL i€R jEL

Complexity analysis

Biclustering is closely related to bipartite graph partitioning. If we consider reads
and positions as vertices of a graph and our binary matrix as the adjacency matrix
of this graph, finding a submatrix of ones in the adjacency matrix is equivalent to
finding a biclique in a bipartite graph. Finding the maximum biclique is an NP-hard
problem [27]. Our problem is even more challenging, as we allow a proportion 7 of
non-existing links, effectively searching for a maximum quasi-biclique.

10

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

2.6 From strips to strain groups
2.6.1 Read characteristic vectors

The final strip set contains the strips generated both from HCA and ILP-QBC. Each
strip corresponds to a biclustering of the rows: a row is either labelled one or zero.
We associate a binary characteristic vector to each read, where the vector’s length
corresponds to the number of strips (see Figure 2).

2.6.2 Definition of strain groups

Two reads participate in the same strain group if they have identical characteristic
vectors - biologically, this means that these reads are identical at all polymorphic
positions. In practice, however, some groups have fewer reads than a specified threshold
(5 in our case). These orphan reads generally correspond to noisy reads that have
been erroneously grouped in some strips. They are rescued by being reassigned them
to bigger groups.

Reassigning orphan reads

To reassign reads, we consider the binary sub-matrix induced by the reads of each big
group. The process can be summarized as follows:

1. Compute the representative binary row-vector Vj of each big group g. The j-th
column of the row-vector equals to:

m

vl = | Zsien S

where A, € Z;nle‘ is the binary matrix induced by group g with m reads, and |z]
rounds z to its nearest integer.

2. Compute the Hamming distance between all the orphan reads and all the
representatives V.

3. For each orphan read and its Hamming-distance-closest-group g:

¢ if the Hamming distance is less than a given threshold (here 0.1), assign the read
to group g;
® otherwise, do not assign the read to any group.

2.7 Producing a strain-level assembly

At this point, reads are partitioned into strain groups on all windows.

Merging windows

To simplify the assembly process, consecutive identical windows are combined. Specif-
ically, two consecutive windows are deemed identical if they partition the reads into
the same groups. In practical terms, two groups are considered identical if more than

11

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

372

373

374

375

376

377

378

379

380

381

382

70% of the reads from the group in the first window are also found in a correspond-
ing group in the second window, and vice versa (considering only the reads present in
both windows). These identical windows are then merged to create longer windows.

Reconstructing the sequences

In each window, a new contig is generated for each group of reads. These contigs are
computed using Racon [28] to polish the corresponding (strain-oblivious) reference
sequence towards the strain-specific sequence the group of reads represents. Conse-
quently, each original contig from the draft assembly can be divided into multiple
windows, and each window can contain several strain-specific contigs (one for each
strain). Finally, the resulting contig graph is processed through GraphUnzip [29] to
resolve repeats and generate a more contiguous final set of contigs.

3 Results
3.1 Datasets

We decided to evaluate strain-level assembly methods on mock communities based on
real and simulated datasets of varying complexity in terms of error rate, number of
strains, and level of abundance. This approach allows us to estimate the performance
of the methods in a controlled scenario where the sequences of the ideal output are
known a priori.

The first dataset we considered is a mixture of five Vagococcus fluvialis strains
barcoded and sequenced in [30]. These genomes were sequenced with barcodes using a
R9.4.1 Nanopore flowcell. By ignoring the barcodes, we obtain a simple mock commu-
nity containing five different strains of roughly the same abundance. Specifically, this
dataset is characterized by three strains whose genomes are almost identical, likely
turning the problem into the distinction of three V. fluvialis strains, one of which is
dominant.

The second dataset is the Zymobiomics gut microbiome standard, a mock commu-
nity sequenced independently with Nanopore 10.4.1 (error rate of 2.5%) and Nanopore
R9.4.1 (error rate of 5%) flowcells. These two samples are available in the European
Nucleotide Archive (ENA) with accession numbers SRR17913199 and SRR17913200,
respectively. This community consists of 21 genomes of bacteria, archea and yeast,
with high variability in terms of abundance. Among the bacteria there are five different
strains of Escherichia coli characterized by equal abundance, making these samples an
ideal dataset for comparing strain separation techniques with two different error rates.

The third type of dataset is simulated and aims to evaluate strainMiner not
only with respect to a higher number of strains but also in presence of a strain
present at different levels of abundance. More precisely, we adopted a protocol sim-
ilar to the one outlined in [4] and [14]. We thus simulated a mock community
based on 10 strains of FEscherichia coli to investigate the impact of strain cover-
age on the ability to recover strain genomes. The E. coli strains are the same as
those previously employed to evaluate HairSplitter [14] and their complete refer-
ence sequences were retrieved from NCBI. More precisely, these include the strains
12009 (GCA_000010745.1), TAT1 (GCA_000026265.1), F11 (GCA_018734065.1), S88

12

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

(GCA_000026285.2), Sakai (GCA_003028755.1), SE15 (GCA_000010485.1), UMNO026
(GCA_000026325.2), HS (GCA_000017765.1), K12 (GCF-009832885.1), and Shigella
flexneri (GCF_000006925.2). Then, for each reference sequence, we simulated a 50X
depth of coverage of Nanopore reads with 5% error rate. Reads were generated with
Badreads [31] using the “nanopore2023” model. All the set of simulated reads were
then merged into a single mixture. In order to evaluate the influence of coverage on
assembly completeness, we created four additional 10-strain mixures by downsam-
pling exclusively the 12009 strain at 30X, 20X, 10X, and 5X. All simulated reads are
available at https://zenodo.org/records/10362565.

3.2 Assembly of the datasets

All datasets were assembled using metaFlye (v2.9.2-b1786) with parameters —-meta
and --nano-raw. We chose metaFlye as it is the only long-read metagenome assembler
thought to work with Oxford Nanopore reads. The obtained (species-level) assembly
was used as input for all the strain-aware assemblers we evaluated. Moreover, an
alignment of the reads against the input assembly was produced with Minimap2 [32]
(parameter -x map-ont) for the software that required it.

We ran the latest available versions of Strainberry (v1.1), Floria (v0.0.1), Hair-
Splitter (v1.9.4), and strainMiner (v1.6.10) with default parameters. Since Strainberry
and Floria have been designed to phase no more than 5 strains by default, when run-
ning on the 10-strain E. coli datasets, we additionally provided the parameters -n 10
and -p 10, respectively, to increase this limit.

It is important to note that Floria does not perform any SNP calling nor does it
output a base-level assembly, but rather provides a collection of haplotype-resolved
read clusters. SNP calling was carried out using Longshot [33] (v1.0.0). Base-level
assemblies of each read cluster were, instead, produced with wtdbg2 [34] (v2.5) follow-
ing the assembly pipeline suggested in Floria’s documentation. The set of assembled
haplotypes was finally complemented with the metaFlye contigs that were not phased
(i.e., not part of Floria’s output).

3.3 Evaluation Metrics

Evaluating metagenome assemblies is a complex task, specifically in a strain-aware
context, due to the limited knowledge of the organisms within a metagenomic sample.
Standard qualitative metrics should in fact be treated with caution as they might
be the result of strain differences rather than errors. For this reason, we assessed
the performance of the strain-aware assembly methods on real and simulated mock
communities for which we precisely know the sequences of the strains we aim to
reconstruct.

For each generated assembly, we computed the following metrics: assembly size,
N50, reference fraction percentage, duplication ratio, number of misassemblies, number
of mismatches, and number of indels. The assembly size and N50 (i.e., the length
such that all contigs of that length or longer cover at least half of the assembly size)
provide a quantitative view of the assembly. The other metrics, instead, provide a
more qualitative assessment.

13

425

426

427

428

429

430

432

433

434

435

436

437

438

439

440

441

442

Table 1 MetaQUAST metrics on the real and simulated datasets. For each assembly we
report the following metrics: assembly size (Total size), N50, reference fraction, duplication ratio (Dup.
ratio), number of misasseblies (# Mis.), number of mismatches per 100 kb, and number of indels per
100 kb. The best values among of the four strain-separated assemblies is in bold font.

Total size N50 Reference Dup. # Mismatches Indels

Assembler (Mb) (kb) frac. (%) ratio Mis. /100kb /100 kb
V. fluvialis metaFlye 4.57 151 26.9 1.036 40 360.12 406.10
(14 Mb) Strainberry 5.71 104 33.1 1.112 45 78.19 513.38
Floria 8.03 142 47.7 1.117 20 102.61 636.40
HairSplitter 9.34 74 58.2 1.066 31 102.49 410.95
strainMiner 8.84 30 54.5 1.080 48 50.80 340.26
Zymo Q9 metaFlye 65.9 1797 63.0 1.001 136 96.97 58.52
(78 Mb) Strainberry 79.9 224 61.2 1.170 122 133.31 110.07
Floria 76.0 64 58.6 1.212 114 230.67 245.47
HairSplitter 94.6 33 76.7 1.179 114 115.38 76.49
strainMiner 76.7 220 73.4 1.044 95 69.90 55.46
Zymo Q20 metaFlye 60.4 388 60.2 1.007 142 115.86 76.49
(78 Mb) Strainberry 69.4 117 69.4 1.037 141 109.49 67.46
Floria 71.0 59 70.7 1.050 117 80.41 79.81
HairSplitter 69.2 68 70.9 1.013 113 69.17 66.36
strainMiner 69.5 51 70.8 1.022 109 67.98 65.14
E. coli metaFlye 14.0 70 25.2 1.029 94 477.68 310.42
10 strains Strainberry 19.6 63 34.2 1.082 175 367.48 138.68
(48 Mb) Floria 35.3 50 60.3 1.155 147 171.95 104.12
HairSplitter 54.8 44 93.6 1.182 311 87.12 52.30
strainMiner 50.1 56 91.1 1.127 335 81.73 72.80

These metrics were obtained with MetaQUAST [35] (v5.2.0) with the option
--unique-mapping to ensure that each assembled sequence (a contig or part of it)
is mapped exclusively to the best location among the reference sequences. This is
crucial because MetaQUAST, which relies on sequence alignment, may suffer from
sub-optimal mappings on very similar references, such as strains of the same species.
For this reason, we complemented MetaQUAST’s evaluation metrics by computing the
k-mer completeness (k = 27) with KAT [36] (v2.4.2). This metric represents the per-
centage of k-mers in the reference genomes that are also present within an assembly
and provides a more accurate view on the strain-specific content that was successfully
recovered.

3.4 Assembly evaluation

Table 1 summarizes the MetaQUAST metrics computed for each strain-level assem-
bly tool on each of the evaluated datasets. To manage the size of the table, in the
case of the 10-strain E. coli datasets, we display only the one in which all strains
have the same abundance. The downsampling experiments, however, exhibited similar
statistics.

On the V. fluvialis dataset, strainMiner is able to yield the lowest amount of
mismatches and indels, while HairSplitter is able to achieve the best results in terms

14

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

of assembly size, reference fraction, and duplication ratio. strainMiner however is on
par with HairSplitter with respect to these metrics. Floria on the other hand is able to
provide the most contiguous assembly (N50 equal to 142 kbp) and the lowest number
of misassemblies at the expense of a more duplicated and less accurate assembly. While
displaying an average performance on most the evaluation metrics, Strainberry was
only able to recover the 33% of the reference sequences. The high reference fraction of
both strainMiner and HairSplitter, compared to the other tools, is also confirmed by
the highest k-mer completeness (Figure 5).

On the Q9 and Q20+ versions of Zymobiomics datasets, results follow the same
trend as for the V. fluvialis dataset. Specifically, strainMiner generates the most accu-
rate assembly, as witnessed by the lowest number of misassemblies, mismatches, and
indels. In terms of contiguity, Strainberry achieves the highest N50 but also at the
expense of a high number of misassemblies. There are however some key differences
for the assemblies generated with the Q9 and Q20+ Nanopore reads. In the first case,
strain-level assemblers are characterized by a lower reference fraction and higher dupli-
cation ratio. The only exception is strainMiner, which is able to provide comparable
results, thus proving to be more tolerant to lower error rates. As for the V. fluvialis,
the k-mer completeness is consistent with the highest reference fraction of strainMiner
and HairSplitter for both the Q9 and Q20+ datasets (Figure 5).

The simulated 10-strain E. coli dataset offered a more challenging scenario due
to the presence of a higher number of closely related genomes. Table 1 shows that
strainMiner and HairSplitter are the only two tools able to achieve a high reference
fraction (> 90%), thus recovering almost completely the 10 different strains. They are
also the two tools with the lowest number of mismatches and indels (as for the other
datasets). Strainberry and Floria, on the other hand, display a much lower reference
coverage (34.2% and 60% respectively) and seem to struggle with high numbers of
conspecific strains.

Finally, the right-hand side of Figure 5 shows the k-mer completeness of the 10-
strain dataset in which the E. coli 12009 strain is characterized by different level
of abundance. As expected, strainMiner and HairSplitter exhibit a better ability to
retrieve strains with low coverage, even when it is as low as 5X (representing only 1.1%
of the total mix), and displayed a k-mer completeness always higher than 0.9. Never-
theless, a positive correlation between the coverage and completeness is noticeable for
all the evaluated methods.

Overall, there is no tool that outperforms the others with respect to all evalua-
tion metrics on the different datasets. All the evaluated tools offer different trade-offs
between contiguity and accuracy. Floria, for example, is able to achieve higher conti-
guity and a comparable number of misassemblies at the expense of a lower base-level
accuracy and reference coverage. On the other hand, when looking at qualitative met-
rics, strainMiner generates more accurate assemblies (or comparable with the other
competing tools) and a low amount of duplicated sequences, especially with higher
error rates.

15

486

487

488

489

490

491

492

493

404

495

496

497

498

499

8 ER

8

27-mer completeness
] S

V3
27-mer completeness of 12009

8

058 095 \
o.

09
’ 0_\.\@\‘—.
& a8s

3 08

0 075
0. —8— mataFiya

Q7 == mataFiyes Strainbary
0. 2 metaFlye+ Foria

s e mataFiyas HurSplitter atve)

0. = metaFyes HeirSplitter (strainhinen)

8

o

0e
Vagococcus Zymo ONT Q9 Zymo ONT Qz0 500 30 20 10¢ 5%

Coverage of the 12009 strain

Fig. 5 Assembly k-mer completeness. On the left-hand side, the 27-mer completeness of
assemblies obtained from real sequencing data is depicted. The level of completeness in the Zymo
communities is based exclusively on the E. coli genomes within the samples. On the right-hand side,
the 27-mer completeness of the 12009 strain is shown for the 10-strain simulated E. coli datasets.
The analysis was performed for varying depth of coverage of the 12009 strain (x-axis), while the other
nine strains were consistently kept at 50X.

10000000 160

W metaFlye+Strainberry
120 metaFlye+Flars
® et aFlyo+HeieSplittes (netive)

1000000 100 - W metaFlye HarSplitter (strainMiner)

60
100000
40
I 20
20000 L 0 - - -

Vagococeus Zymo ONT Q& Zymo ONT QZ0 Vagocectus Zymo ONT Q2 Zymo ONT Q20

CPU time (seconds)
Peak RAM usage (GB)
g

Fig. 6 CPU time and maximum memory usage. Comparison of Strainberry, Floria, HairSplit-
ter, and strainMiner on the three real datasets in terms of CPU time (left) and maximum memory
usage (right). The legend applies to both the plots.

3.5 Resource usage

All results were obtained on a server housing 16 Intel Xeon CPUs with four cores each,
running at 2.7 GHz. 3.1 TB of RAM was available.

Although strainMiner, like the other competing tools, is trivially parallel, we ran
it on a single thread due to limitations imposed by the Gurobi license. For this reason
we decided to simply report CPU times.

Across all datasets, strainMiner consistently exhibited a processing speed more
than tenfold faster than Strainberry, while its runtime was approximately on par with
that of HairSplitter (Figures 6).

On the real sequencing data, strainMiner used between 7 and 30 times less peak
memory than HairSplitter (Figure 6).

As a whole, strainMiner significantly diminishes the memory usage of the Hair-
Splitter pipeline without impacting negatively on its speed and arguably improving
the quality of the assembly.

16

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

4 Discussion

In this work we introduced strainMiner, a method to assemble individual strain
genomes from metagenomic sequencing data. Unlike other metagenome assembly
methods, strainMiner is based on a novel formulation of the “strain separation” prob-
lem as a tiling problem on a binary matrix. We proposed and implemented an Integer
Linear Programming (ILP) model in order to efficiently partition such a matrix and
to cluster sequences (reads) that likely belong to the same haplotype. The ILP-based
formulation allows us to exploit a well-established and highly optimized solver such as
Gurobi. This, along with the use of heuristics inspired from data mining, allow strain-
Miner to require considerably less time and memory compared to other competing
software.

In order to assess its capability to distinguish and reconstruct strains, strainMiner
is implemented as a fork of HairSplitter (a previously developed tool for strain-level
metagenome assembly), from which we replaced the read-clustering step with our
approach. On both real and simulated datasets, strainMiner compared favorably to
state-of-the-art methods in terms of strain recovery and base-level accuracy. We also
showed that strainMiner’s output is less affected by reads with high error rates or
metagenomes characterized by a high number of distinct strains. At the same time,
strainMiner is able to recover strains with a depth of coverage as low as 5X.

Nevertheless, the assemblies obtained with strainMiner had often much lower con-
tiguity compared to the one obtained with HairSplitter. This could be due to the fact
that strainMiner is based on the version 1.6.10 of HairSplitter, while in our compari-
son we used the latest available version (1.9.4). Upgrading strainMiner to this version
might further improve output’s contiguity. Moreover, it is also possible that the prop-
erties of the read clusters computed by strainMiner could be quite different compared
to those obtained with HairSplitter. A tailored scaffolding step could thus improve
contiguity and would merit further investigation. A possible approach would be to con-
sider overlapping fixed-length windows. As a matter of fact, the use of non-overlapping
windows generates clean input matrices for the ILP solver but completely relies on
the GraphUnzip module of HairSplitter to improve assembly contiguity. Considering
overlapping windows, however, could better take advantage of the co-occurrence of
strain-specific nucleotides, allowing to identify longer haplotypes beforehand.

Finally, one additional limitation is the use of the Gurobi solver: an academic
license is free but limited to three instances of Gurobi running at the same time.
Attempts to use the free CBC solver showed a decrease in performance.

Software availability

strainMiner is open source and available online with the GPL3 licence. The strain-
Miner used to generate the results is available at https://github.com/rolandfaure/
strainminer. A more recent version, under development, is available at https://gitlab.
com/haplotype-tiling/strainminer-py.

17

540

541

542

543

544

545

546

547

548

549

550

552

553

554

555

556

557

558

559

560

562

563

565

566

567

568

569

570

571

572

573

Acknowledgements

We
opt

org

wish to thank Dominique Lavenier, who formulated the first version of the
imization problem.
We acknowledge the GenOuest bioinformatics core facility https://www.genouest.
for providing the computing infrastructure.

References

[1]

2]

3]

[4]

Ghurye, J. S., Cepeda-Espinoza, V. & Pop, M. Metagenomic assembly: Overview,
challenges and applications. The Yale journal of biology and medicine 89, 353-362
(2016).

Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human
gut microbiome. Nature biotechnology 39, 105-114 (2021).

Olson, N. D. et al. Metagenomic assembly through the lens of validation: recent
advances in assessing and improving the quality of genomes assembled from
metagenomes. Briefings in bioinformatics 20, 1140-1150 (2019).

Vicedomini, R., Quince, C., Darling, A. E. & Chikhi, R. Strainberry: auto-
mated strain separation in low-complexity metagenomes using long reads. Nature
Communications 12, 4485 (2021). URL https://www.nature.com/articles/
$41467-021-24515-9.

Albanese, D. & Donati, C. Strain profiling and epidemiology of bacterial species
from metagenomic sequencing. Nature communications 8, 2260 (2017).

Sonnenborn, U. Escherichia coli strain nissle 1917—from bench to bedside and
back: history of a special escherichia coli strain with probiotic properties. FEMS
microbiology letters 363, fnw212 (2016).

Frank, C. et al. Epidemic profile of shiga-toxin—producing escherichia coli 0104:h4
outbreak in germany. New England Journal of Medicine 365, 1771-1780 (2011).
URL https://doi.org/10.1056/NEJMoal106483. PMID: 21696328.

Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from
metagenomes. Genome Biology 18, 181 (2017). URL http://genomebiology.
biomedcentral.com/articles/10.1186/s13059-017-1309-9.

Quince, C. et al. Metagenomics Strain Resolution on Assembly Graphs. preprint,
Bioinformatics (2020). URL http://biorxiv.org/lookup/doi/10.1101/2020.09.06.
284828.

Baaijens, J., Aabidine, A., Rivals, E. & Schonhuth, A. De novo assembly of viral
quasispecies using overlap graphs. Genome Research (2017).

18

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

[11]

[12]

[13]

[14]

[15]

Kang, X., Luo, X. & Schonhuth, A. StrainXpress: strain aware metagenome
assembly from short reads. Nucleic Acids Research 50, e101-e101 (2022). URL
https://academic.oup.com/nar/article/50/17/e101/6625806.

Kazantseva, E., Donmez, A., Pop, M. & Kolmogorov, M. stRainy: assembly-based
metagenomic strain phasing using long reads. preprint, Bioinformatics (2023).
URL http://biorxiv.org/lookup/doi/10.1101/2023.01.31.526521.

Shaw, J., Gounot, J.-S., Chen, H., Nagarajan, N. & Yu, Y. W. Floria: Fast and
accurate strain haplotyping in metagenomes. Bioinformatics 40, i30-138 (2024).

Faure, R., Lavenier, D. & Flot, J.-F. Hairsplitter: haplotype assembly from long,
noisy reads. bioRziv (2024). URL https://www.biorxiv.org/content/early/2024/
06/14/2024.02.13.580067.

Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution anal-
ysis of resistance determinants and mobile elements in human microbiomes.
Nature Biotechnology 37,937-944 (2019). URL http://www.nature.com/articles/
s41587-019-0191-2.

Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using
repeat graphs. Nature Methods 17,1103-1110 (2020). URL https://www.nature.
com/articles/s41592-020-00971-x.

Bickhart, D. M. et al. Generating lineage-resolved, complete metagenome-
assembled genomes from complex microbial communities. Nature biotechnology
40, 711-719 (2022).

Feng, X., Cheng, H., Portik, D. & Li, H. Metagenome assembly of high-fidelity
long reads with hifiasm-meta. Nature Methods 19, 1-4 (2022).

Benoit, G. et al. High-quality metagenome assembly from long accurate reads
with metamdbg. Nature Biotechnology 1-6 (2024).

Bansal, V. Hapcut2: A method for phasing genomes using experimental sequence
data. Methods in molecular biology 2590, 139-147 (2022).

Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics 76, 036106 (2007).

Biemann, C. Chinese whispers: An efficient graph clustering algorithm and its

application to natural language processing problems. Proceedings of TextGraphs
73-80 (2006).

19

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

[23]

[25]

[26]

Truong, T. K. M., Faure, R. & Andonov, R. Assembling close strains in
metagenome assemblies using discrete optimization, 15th International Confer-
ence on Bioinformatics Models, Methods and Algorithms, BIOINFORMATICS,
February 21-23, 2024, Rome, Italy. URL https://bioinformatics.scitevents.org.

Feng, Z., Clemente, J., Wong, B. & Schadt, E. Detecting and phasing minor single-
nucleotide variants from long-read sequencing data. Nature Communications 12,

3032 (2021).

Fix, E. & Hodges, J. L. Discriminatory analysis. nonparametric discrimination:
Consistency properties. International Statistical Review / Revue Internationale
de Statistique 57, 238-247 (1989). URL http://www.jstor.org/stable/1403797.

Troyanskaya, O. et al. Missing value estimation methods for dna microar-
rays. Bioinformatics 17, 520-525 (2001). URL https://doi.org/10.1093/
bioinformatics/17.6.520.

Peeters, R. The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics 131, 651-654 (2003).

Fang, L. & Wang, K. Polishing high-quality genome assemblies. Nature Methods
19, 649-650 (2022). URL https://www.nature.com/articles/s41592-022-01515-1.

Faure, R., Guiglielmoni, N. & Flot, J.-F. Graphunzip: unzipping assembly graphs
with long reads and hi-c. bioRxiv 2021-01 (2021).

Rodriguez Jimenez, A. et al. Comparative genome analysis of vagococcus fluvialis
reveals abundance of mobile genetic elements in sponge-isolated strains. BMC
Genomics 23 (2022).

Wick, R. Badread: simulation of error-prone long reads. Journal of Open Source
Software 4, 1316 (2019). URL http://joss.theoj.org/papers/10.21105/joss.01316.

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34, 3094-3100 (2018). URL https://academic.oup.com/bioinformatics/article/
34/18/3094,/4994778.

Edge, P. & Bansal, V. Longshot enables accurate variant calling in diploid
genomes from single-molecule long read sequencing. Nature communications 10,
4660 (2019).

Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nature
methods 17, 155-158 (2020).

Mikheenko, A., Saveliev, V. & Gurevich, A. Metaquast: Evaluation of
metagenome assemblies. Bioinformatics 32, btv697 (2015).

20

s [36) Mapleson, D., Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. Kat:
642 A k-mer analysis toolkit to quality control ngs datasets and genome assemblies.
043 Bioinformatics (Ozford, England) 33 (2016).

21

